65 research outputs found

    New Broad-Spectrum Viral Fusion Inhibitors Act by Deleterious Effect on the Viral Membrane through the Production Singlet Oxygen Molecules

    Get PDF
    Chitosan oligosaccharides (COS), the degraded products of chitosan, have been demonstrated to have versatile biological functions. In primary studies, it has displayed significant adjuvant effects when mixed with other vaccines. In this study, chitosan oligosaccharides with different deacetylation degrees were prepared and conjugated to porcine circovirus type 2 (PCV2) subunit vaccine to enhance its immunogenicity. The vaccine conjugates were designed by the covalent linkage of COSs to PCV2 molecules and administered to BALB/c mice three times at two-week intervals. The results indicate that, as compared to the PCV2 group, COS-PCV2 conjugates remarkably enhanced both humoral and cellular immunity against PCV2 by promoting lymphocyte proliferation and initiating a mixed T-helper 1 (Th1)/T-helper 2 (Th2) response, including raised levels of PCV2-specific antibodies and an increased production of inflammatory cytokines. Noticeably, with the increasing deacetylation degree, the stronger immune responses to PCV2 were observed in the groups with COS-PCV2 vaccination. In comparison with NACOS (chitin oligosaccharides)-PCV2 and LCOS (chitosan oligosaccharides with low deacetylation degree)-PCV2, HCOS (chitosan oligosaccharides with high deacetylation degree)-PCV2 showed the highest adjuvant effect, even comparable to that of PCV2/ISA206 (a commercialized adjuvant) group. In summary, COS conjugation might be a viable strategy to enhance the immune response to PCV2 subunit vaccine, and the adjuvant effect was positively correlated with the deacetylation degree of COS.</p

    Multiphysics vibration FE model of piezoelectric macro fibre composite on carbon fibre composite structures

    Get PDF
    This paper presents a finite element (FE) model developed using commercial FE software COMSOL to simulate the multiphysical process of pieozoelectric vibration energy harvesting (PVEH), involving the dynamic mechanical and electrical behaviours of piezoelectric macro fibre composite (MFC) on carbon fibre composite structures. The integration of MFC enables energy harvesting, sensing and actuation capabilities, with applications found in aerospace, automotive and renewable energy. There is an existing gap in the literature on modelling the dynamic response of PVEH in relation to real-world vibration data. Most simulations were either semi-analytical MATLAB models that are geometry unspecific, or basic FE simulations limited to sinusoidal analysis. However, the use of representative environment vibration data is crucial to predict practical behaviour for industrial development. Piezoelectric device physics involving solid mechanics and electrostatics were combined with electrical circuit defined in this FE model. The structure was dynamically excited by interpolated vibration data files, while orthotropic material properties for MFC and carbon fibre composite were individually defined for accuracy. The simulation results were validated by experiments with <10﹪ deviation, providing confidence for the proposed multiphysical FE model to design and optimise PVEH smart composite structures

    Surface Adjustment Strategy for a Large Radio Telescope with Adjustable Dual Reflectors

    Get PDF
    With the development of large-aperture and high-frequency radio telescopes, a surface adjustment procedure for the compensation of surface deformations has become of great importance. In this study, an innovative surface adjustment strategy is proposed to achieve an automated adjustment for the large radio telescope with adjustable dual reflectors. In the proposed strategy, a high-precision and long-distance measurement instrument is adopted and installed on the back of the sub-reflector to measure the distances and elevation angles of the target points on the main reflector. Here, two surface adjustment purposes are discussed. The first purpose is to ensure that the main reflector and sub-reflector are always positioned at their ideal locations during operation. The second purpose is to adjust the main reflector to the location of the best fitting reflector, and the sub-reflector to the focus of the best fitting reflector. Next, the calculation procedures for the adjustments of the main reflector and the sub-reflector are discussed in detail, and corresponding simulations are carried out to verify the proposed method. The results show that the proposed strategy is effective. This study can provide helpful guidance for the design of automated surface adjustments for large telescopes

    A Numerical Feasibility Study of Kinetic Energy Harvesting from Lower Limb Prosthetics

    Get PDF
    With the advancement trend of lower limb prosthetics headed towards bionics (active ankle and knee) and smart prosthetics (gait and condition monitoring), there is an increasing integration of various sensors (micro-electromechanical system (MEMS) accelerometers, gyroscopes, magnetometers, strain gauges, pressure sensors, etc.), microcontrollers and wireless systems, and power drives including motors and actuators. All of these active elements require electrical power. However, inclusion of a heavy and bulky battery risks to undo the lightweight advancements achieved by the strong and flexible composite materials in the past decades. Kinetic energy harvesting holds the promise to recharge a small on-board battery in order to sustain the active systems without sacrificing weight and size. However, careful design is required in order not to over-burden the user from parasitic effects. This paper presents a feasibility study using measured gait data and numerical simulation in order to predict the available recoverable power. The numerical simulations suggest that, depending on the axis, up to 10s mW average electrical power is recoverable for a walking gait and up to 100s mW average electrical power is achievable during a running gait. This takes into account parasitic losses and only capturing a fraction of the gait cycle to not adversely burden the user. The predicted recoverable power levels are ample to self-sustain wireless communication and smart sensing functionalities to support smart prosthetics, as well as extend the battery life for active actuators in bionic systems. The results here serve as a theoretical foundation to design and develop towards regenerative smart bionic prosthetics

    Preliminary study of regulation technology of wind field distribution on QTT site based on test of equivalent wind field

    Get PDF
    The effect of wind gust on the large reflector antenna is one of the main factors that can affect the antenna performance and therefore, this effect must be minimized to meet the strict performance requirement in the world largest steerable telescope, which is QiTai Telescope (QTT). In this paper, the characteristics of the topography as well as the wind distribution around QTT site have been analyzed and consequently, a technology for improving the wind distribution in an active way has been proposed. Additionally, an equivalent wind distribution test rig for the proposed technology has been built in the lab and the corresponding experiment has been carried out. The experimental data indicated that the proposed technology was a promising tool for regulating the wind distribution for the large reflector antenna and it was found that the proposed technology can significantly reduce the wind speed as well as the wind impact range after the wind regulation has been given in the test. The results in this paper has provided a solid foundation for the regulation of the wind distribution of the QTT site

    Panel Adjustment and Error Analysis for a Large Active Main Reflector Antenna by Using the Panel Adjustment Matrix

    Get PDF
    Active panels are generally applied in large aperture and high-frequency reflector antennas, and the precise calculation of the actuator adjustment value is of great importance. First, the approximation relationship between the adjustment value and panel elastic deformation is established. Subsequently, a panel adjustment matrix for the whole reflector is derived to calculate the reflector deformation caused by the actuator adjustment. Next, the root mean square (rms) error of the deformed reflector is expressed as a quadratic form in the matrix form, and the adjustment value can be derived easily and promptly from the corresponding extreme value. The solution is expected to be unique and optimal since the aforementioned quadratic form is a convex function. Finally, a 35 m reflector antenna is adopted to perform the panel adjustments, and the effect of the adjustment errors is discussed. The results show that compared with the traditional model, where the panel elastic deformation is not considered, the proposed method exhibits a higher accuracy and is more suitable for use in large reflectors with a high operation frequency. The adjustment errors in different rings exert different influences on the gain and sidelobe level, which can help determine the actuator distribution with different precisions

    The diagnostic analysis of the fault coupling effects in planet bearing

    Get PDF
    The purpose of this paper is to investigate the fault coupling effects in the planet bearing as well as the corresponding vibration signatures in the resultant vibration spectrum. In a planetary gear application, the planet bearing can not only spin around the planet gear axis, but also revolve about the sun gear axis and this rotating mechanism poses a big challenge for the diagnostic analysis of the planet bearing vibration spectrum. In addition, the frequency component interaction and overlap phenomenon in the vibration spectrum caused by the fault coupling effect can even worsen the diagnosis results. To further the understanding of the fault coupling effects in a planet bearing, a 34° of freedom planetary gear model with detailed planet bearing model was established to obtain the dynamic response in the presence of various bearing fault scenarios. The method of modelling the bearing distributed faults and localized faults has been introduced in this paper, which can be further incorporated into the planetary gear model to obtain the faulted vibration signal. The “benchmark” method has been adopted to enhance the planet bearing fault impulses in the vibration signals and in total, the amplitude demodulation results from 20 planet bearing fault scenarios have been investigated and analyzed. The coherence estimation over the vibration frequency domain has been proposed as a tool to quantify the fault impact contribution from different fault modes and the results suggested that the outer raceway fault contributes most to the resultant planet bearing vibration spectrum in all the investigated fault scenarios

    Potential of Flocculant-Aided Soil Slurry Dewatering in Land Reclamation: Laboratory Investigations

    No full text
    When soil slurry is used as a fill material in land reclamation projects, vacuum preloading or geotextile tube systems are often adopted for the dewatering treatment in a large scale. However, these two methods often suffer from clogging problems and impede further dewatering treatment. In this study, we test the potential of using flocculants to enhance the dewatering efficiency in a vacuum preloading model test and a geotextile tube model test. Experimental results show that, by adding a flocculant into soil slurry, the dewatering efficiency in terms of drainage volumes and rates is significantly improved as compared to that in pure soil slurry. The amounts of drainage water in the tests with flocculant addition are about 20% and 100% more than those in pure slurry tests in the vacuum preloading and geotextile tube model tests, respectively. The underlying reason could be the flocculation effect that prevents the movement of small soil grains and the formation of impermeable layers on the filters

    Conjugation of chitosan oligosaccharides via a carrier protein markedly improves immunogenicity of porcine circovirus vaccine

    No full text
    Porcine circovirus type 2 (PCV2)-associated diseases have led to huge economic losses in pig industry. Our laboratory previously found that conjugation of chitosan oligosaccharides (COS) enhanced the immunogenicity of PCV2 vaccine against infectious pathogens. In this study, an effective adjuvant system was developed by covalent conjugation of COS via a carrier protein (Ovalbumin, OVA) to further increase the immunogenicity of vaccine. Its effect on dendritic cells maturation was assessed in vitro and its immunogenicity was investigated in mice. The results indicated that, as compared to the PCV2 and COS-PCV2, COS-OVA-PCV2 stimulated dendritic cells to express higher maturation markers (CD80, CD86, CD40 and MHC class II) and remarkably promoted both humoral and cellular immunity against PCV2 by enhancing the lymphocyte proliferation and inducing a mixed Th1/Th2 response, including the increased production of PCV2-specific antibodies and raised levels of inflammatory cytokines. Furthermore, it displayed better immune-stimulating effects than the physical mixture of vaccine and ISA206 (a commercialized adjuvant). In conclusion, conjugation of COS via a carrier protein might be a promising strategy to enhance the immunogenicity of vaccines

    Conjugation of chitosan oligosaccharides enhances immune response to porcine circovirus vaccine by activating macrophages

    No full text
    Porcine circovirus type 2 (PCV2)-associated diseases have led to great economic losses to the pig industry. Our lab previously found that conjugation of chitosan oligosaccharides (COS) or via a carrier protein enhanced the immunogenicity of PCV2 vaccine against infectious pathogens. However, precise mechanisms and signal transduction pathways underlying the efficacy of COS conjugation remains poorly defined. In this study, to better understand the effects and mechanism of COS conjugates maintain the adjuvant potential in vivo, we investigated its augmentation of macrophage function, including cell activation, NO production, cytokine production and phagocytosis. Additionally, the role of Toll-like receptors (TLR) proteins in this process was also assessed. The results indicate that, as compared to the PCV and PCV/COS, conjugation of COS effectively enhanced the NO production, cytokines generation and phagocytosis activity of macrophages. Noticeably, the generation of NO and proinflammatory cytokines was closely related to the TLR2/4 signaling pathways, strongly suggesting that conjugation of COS regulates innate and adaptive immunity by activation of macrophages, resulting in immune enhancement. In summary, the present study provides a potential mechanism of COS conjugation as a novel adjuvant to improve immune responses against various diseases.</p
    corecore