123 research outputs found

    Taxonomy, Semantic Data Schema, and Schema Alignment for Open Data in Urban Building Energy Modeling

    Full text link
    Urban Building Energy Modeling (UBEM) is a critical tool to provide quantitative analysis on building decarbonization, sustainability, building-to-grid integration, and renewable energy applications on city, regional, and national scales. Researchers usually use open data as inputs to build and calibrate UBEM. However, open data are from thousands of sources covering various perspectives of weather, building characteristics, etc. Besides, a lack of semantic features of open data further increases the engineering effort to process information to be directly used for UBEM as inputs. In this paper, we first reviewed open data types used for UBEM and developed a taxonomy to categorize open data. Based on that, we further developed a semantic data schema for each open data category to maintain data consistency and improve model automation for UBEM. In a case study, we use three popular open data to show how they can be automatically processed based on the proposed schematic data structure using large language models. The accurate results generated by large language models indicate the machine-readability and human-interpretability of the developed semantic data schema

    Agri-food supply chain management : Bibliometric and content analyses

    Get PDF
    Agri-food supply chain management (ASCM) research has gained attraction in recent years. This study aims to examine the knowledge structure, trace the evolution of, and propose future research directions for ASCM by a systematic literature review combined with bibliometric and content analyses. A total of 1770 articles were selected from Scopus for bibliometric analyses. We conducted a content analysis based on 188 articles in six clusters selected from the co-citation analysis. This review provides insights into key authors, their affiliations, journal quality, and the prestige of the reviewed articles, aspects that have not been fully captured or evaluated by previous reviews. Using bibliometric tools, we identified six clusters for ASCM, based on which, future research directions are proposed. Content analysis provides additional insights in each cluster. In particular, sustainability runs through all the themes identified except for one

    Magnet bioreporter device for ecological toxicity assessment on heavy metal contamination of coal cinder sites

    Get PDF
    A novel magnet bioreporter device was developed in this research for soil toxicity assessment, via magnetic nanoparticles functionalized whole-cell bioreporters. The whole-cell bioreporter ADPWH-recA kept response capability to DNA damage after magnetic nanoparticles (MNPs) functionalization, and could be harvested from soil samples by permanent magnet to reduce the soil particle disturbance. Compared to conventional treatments applying bioreporter directly in soil-water mixture (SW-M treatment) or supernatant (SW-S treatment), MNPs functionalized bioreporter via the magnet device (MFB) treatment achieved high sensitivity to evaluate the toxicity and bioavailability of chromium contamination in soils from 10 mg/kg to 5000 mg/kg soil dry weight. The MNPs functionalized bioreporter also achieved high reproducibility with pH value from 5.0 to 9.0, salinity from 0% to 3% and temperature from 20 °C to 37 °C. A case study was carried out on the ecological toxicity assessment of heavy metal contamination at the coal cinder site via the magnet bioreporter device. The heavy metal toxicity declined with the increasing distance to the coal cinder point, and a significant accumulation of heavy metal toxicity was observed along the vertical distribution. No direct link was found between the pollution load index (PLI) and heavy metal toxicity, and the results suggested the bioreporter test monitored the toxicity of heavy metals in soils and was an important approach for ecological risk assessment. Magnet bioreporter device also offered the high throughput biological measurement and was feasible for in situ monitoring

    Assessing Heavy Metal Pollution of the Largest Nature Reserve in Tianjin City, China

    Get PDF
    Embargo until June 10, 2023Beidagang Wetland (BW) Nature Reserve is centrally situated in Tianjin City, experiencing an extreme industrial development. This study uses index characteristic analysis systems for assessing the individual and combined heavy metal pollution loading in the water during the spring and autumn seasons. By combining the pollution level of single pollutant, a more comprehensive evaluation of water quality in BW was achieved. Water quality was worst during autumn due to high level of Cd and Pb, which indicate the type of anthropogenic activities have a serious effect on heavy metal pollution in BW. In addition, high exchangeable amounts of Cd (> 40%) were found in the sediments of BW, indicating Cd pollution has emerged. There is a need for appropriate abatement actions curbing heavy metal loading and improving water quality of the BW Nature Reserve, thereby ensuring a sustainable management of its ecosystem services.acceptedVersio

    The dynamic change of microbial communities in crude oil contaminated soils from oilfields in China

    Get PDF
    To study the biodegradability of microbial communities in crude oil contamination, crude oil-contaminated soil samples from different areas of China were collected. Using polyphasic approach, this study explored the dynamic change of the microbial communities during natural accumulation in oilfield and how the constructed bioremediation systems reshape the composition of microbial communities. The abundance of oil-degrading microbes was highest when oil content was 3%–8%. This oil content is potentially optimal for oil-degrading bacteria proliferate. During a ∼12 months natural accumulation, the quantity of oil-degrading microbes increased from 105 to 108 cells/g of soil. A typical sample of Liaohe (LH, oil-contaminated site near Liaohe river, Liaoning Province, China) was remediated for 50 days to investigate the dynamic change of microbial communities. The average FDA (a fluorescein diacetate approach) activities reached 0.25 abs/h·g dry soil in the artificially enhanced repair system, 32% higher than the 0.19 abs/h·g dry soil in natural circumstances. The abundance of oil-degrading microbes increased steadily from 0.001 to 0.068. During remediation treatment, oil content in the soil sample was reduced from 6.0% to 3.7%. GC-MS analysis indicated up to 67% utilization of C10–C20 normal paraffin hydrocarbons, the typical compounds that undergo microbial degradation

    A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples

    Get PDF
    Whole-cell bioreporters have emerged as promising tools for genotoxicity evaluation, due to their rapidity, cost-effectiveness, sensitivity and selectivity. In this study, a method for detecting genotoxicity in environmental samples was developed using the bioluminescent whole-cell bioreporter Escherichia coli recA::luxCDABE. To further test its performance in a real world scenario, the E. coli bioreporter was applied in two cases: i) soil samples collected from chromium(VI) contaminated sites; ii) crude oil contaminated seawater collected after the Jiaozhou Bay oil spill which occurred in 2013. The chromium(VI) contaminated soils were pretreated by water extraction, and directly exposed to the bioreporter in two phases: aqueous soil extraction (water phase) and soil supernatant (solid phase). The results indicated that both extractable and soil particle fixed chromium(VI) were bioavailable to the bioreporter, and the solid-phase contact bioreporter assay provided a more precise evaluation of soil genotoxicity. For crude oil contaminated seawater, the response of the bioreporter clearly illustrated the spatial and time change in genotoxicity surrounding the spill site, suggesting that the crude oil degradation process decreased the genotoxic risk to ecosystem. In addition, the performance of the bioreporter was simulated by a modified cross-regulation gene expression model, which quantitatively described the DNA damage response of the E. coli bioreporter. Accordingly, the bioluminescent response of the bioreporter was calculated as the mitomycin C equivalent, enabling quantitative comparison of genotoxicities between different environmental samples. This bioreporter assay provides a rapid and sensitive screening tool for direct genotoxicity assessment of environmental samples

    Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation

    Get PDF
    Uncultivable microorganisms account for over 99% of all species on the planet, but their functions are yet not well characterized. Though many cultivable degraders for n-alkanes have been intensively investigated, the roles of functional n-alkane degraders remain hidden in the natural environment. This study introduces the novel magnetic nanoparticle-mediated isolation (MMI) technology in Nigerian soils and successfully separates functional microbes belonging to the families Oxalobacteraceae and Moraxellaceae, which were dominant and responsible for alkane metabolism in situ. The alkR-type n-alkane monooxygenase genes, instead of alkA- or alkP-type, were the key functional genes involved in the n-alkane degradation process. Further physiological investigation via a BIOLOG PM plate revealed some carbon (Tween 20, Tween 40 and Tween 80) and nitrogen (tyramine, L-glutamine and D-aspartic acid) sources promoting microbial respiration and n-alkane degradation. With further addition of promoter carbon or nitrogen sources, the separated functional alkane degraders significantly improved n-alkane biodegradation rates. This suggests that MMI is a promising technology for separating functional microbes from complex microbiota, with deeper insight into their ecological functions and influencing factors. The technique also broadens the application of the BIOLOG PM plate for physiological research on functional yet uncultivable microorganisms

    Application fruit tree hole storage brick fertilizer is beneficial to increase the nitrogen utilization of grape under subsurface drip irrigation

    Get PDF
    It is very important to promote plant growth and decrease the nitrogen leaching in soil, to improve nitrogen (N) utilization efficiency. In this experiment, we designed a new fertilization strategy, fruit tree hole storage brick (FTHSB) application under subsurface drip irrigation, to characterise the effects of FTHSB addition on N absorption and utilization in grapes. Three treatments were set in this study, including subsurface drip irrigation (CK) control, fruit tree hole storage brick A (T1) treatment, and fruit tree hole storage brick B (T2) treatment. Results showed that the pore number and size of FTHSB A were significantly higher than FTHSB B. Compared with CK, T1 and T2 treatments significantly increased the biomass of different organs of grape, N utilization and 15N content in the roots, stems and leaves, along with more prominent promotion at T1 treatment. When the soil depth was 15–30 cm, the FTHSB application significantly increased the soil 15N content. But when the soil depth was 30–45 cm, it reduced the soil 15N content greatly. T1 and T2 treatments obviously increased the activities of nitrite reductase (NR) and glutamine synthetase (GS) in grape leaves, also the urease activity(UR) in 30 cm of soil. Our findings suggest that FTHSB promoted plant N utilization by reducing N loss in soil and increasing the enzyme activity related to nitrogen metabolism. In addition, this study showed that FTHSB A application was more effective than FTHSB B in improving nitrogen utilization in grapes

    C1q complement/tumor necrosis factor-associated proteins in cardiovascular disease and covid-19

    Get PDF
    With continually improving treatment strategies and patient care, the overall mortality of cardiovascular disease (CVD) has been significantly reduced. However, this success is a double-edged sword, as many patients who survive cardiovascular complications will progress towards a chronic disorder over time. A family of adiponectin paralogs designated as C1q complement/tumor necrosis factor (TNF)-associated proteins (CTRPs) has been found to play a role in the development of CVD. CTRPs, which are comprised of 15 members, CTRP1 to CTRP15, are secreted from different organs/tissues and exhibit diverse functions, have attracted increasing attention because of their roles in maintaining inner homeostasis by regulating metabolism, inflammation, and immune surveillance. In particular, studies indicate that CTRPs participate in the progression of CVD, influencing its prognosis. This review aims to improve understanding of the role of CTRPs in the cardiovascular system by analyzing current knowledge. In particular, we examine the association of CTRPs with endothelial cell dysfunction, inflammation, and diabetes, which are the basis for development of CVD. Additionally, the recently emerged novel coronavirus (COVID-19), officially known as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has been found to trigger severe cardiovascular injury in some patients, and evidence indicates that the mortality of COVID-19 is much higher in patients with CVD than without CVD. Understanding the relationship of CTRPs and the SARS-CoV-2-related damage to the cardiovascular system, as well as the potential mechanisms, will achieve a profound insight into a therapeutic strategy to effectively control CVD and reduce the mortality rate

    Nicotine aggravates vascular adiponectin resistance via ubiquitin-mediated adiponectin receptor degradation in diabetic Apolipoprotein E knockout mouse

    Get PDF
    There is limited and discordant evidence on the role of nicotine in diabetic vascular disease. Exacerbated endothelial cell dysregulation in smokers with diabetes is associated with the disrupted adipose function. Adipokines possess vascular protective, anti-inflammatory, and anti-diabetic properties. However, whether and how nicotine primes and aggravates diabetic vascular disorders remain uncertain. In this study, we evaluated the alteration of adiponectin (APN) level in high-fat diet (HFD) mice with nicotine (NIC) administration. The vascular pathophysiological response was evaluated with vascular ring assay. Confocal and co-immunoprecipitation analysis were applied to identify the signal interaction and transduction. These results indicated that the circulating APN level in nicotine-administrated diabetic Apolipoprotein E-deficient (ApoE−/−) mice was elevated in advance of 2 weeks of diabetic ApoE−/− mice. NIC and NIC addition in HFD groups (NIC + HFD) reduced the vascular relaxation and signaling response to APN at 6 weeks. Mechanistically, APN receptor 1 (AdipoR1) level was decreased in NIC and further significantly reduced in NIC + HFD group at 6 weeks, while elevated suppressor of cytokine signaling 3 (SOCS3) expression was induced by NIC and further augmented in NIC + HFD group. Additionally, nicotine provoked SOCS3, degraded AdipoR1, and attenuated APN-activated ERK1/2 in the presence of high glucose and high lipid (HG/HL) in human umbilical vein endothelial cells (HUVECs). MG132 (proteasome inhibitor) administration manifested that AdipoR1 was ubiquitinated, while inhibited SOCS3 rescued the reduced AdipoR1. In summary, this study demonstrated for the first time that nicotine primed vascular APN resistance via SOCS3-mediated degradation of ubiquitinated AdipoR1, accelerating diabetic endothelial dysfunction. This discovery provides a potential therapeutic target for preventing nicotine-accelerated diabetic vascular dysfunction
    • …
    corecore