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Abstract

Whole-cell bioreporters have emerged as promisinstfor genotoxicity evaluation,
due to their rapidity, cost-effectiveness, sengitiand selectivity. In this study, a
method for detecting genotoxicity in environmergamples was developed using the
bioluminescent whole-cell bioreport&scherichia coli recA::luxCDABETo further
test its performance in a real world scenario,Bheoli bioreporter was applied in two
cases: i) soil samples collected from chromium(@&htaminated sites; ii) crude oil
contaminated seawater collected after the JiaoBwyuoil spill which occurred in
2013. The chromium(VI) contaminated soils were neegted by water extraction, and
directly exposed to the bioreporter in two phasgsieous soil extraction (water phase)
and soil supernatant (solid phase). The resultsated that both extractable and soil
particle fixed chromium(VI) were bioavailable tcetbioreporter, and the solid-phase
contact bioreporter assay provided a more precsigkiation of soil genotoxicity. For
crude oil contaminated seawater, the responseedbitireporter clearly illustrated the
spatial and time change in genotoxicity surroundhey spill site, suggesting that the
crude oil degradation process decreased the gdnatsk to ecosystem. In addition,
the performance of the bioreporter was simulated byodified cross-regulation gene
expression model, which quantitatively describezlNA damage response of the
coli bioreporter. Accordingly, the bioluminescent resg® of the bioreporter was
calculated as the mitomycin C equivalent, enablqntitative comparison of
genotoxicities between different environmental sksp This bioreporter assay

provides a rapid and sensitive screening tool foectl genotoxicity assessment of
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1 Introduction

As many anthropogenic contaminants are releasedtla environment, genotoxins
are of great concern as they are potentially dangeto the natural environment and
human health (Shin, 2010). Chemical analysis cdy g@mantify the total amount of
chemicals within the samples, however sufferingnfiltigh cost, and time-consuming
and laborious operation. Moreover, chemical anslydbes not directly provide
integrated genotoxic effects or information on tbheavailability of various
contaminants in complex environmental media (Shial.e 2005; Jiang et al., 2016).
A microbial whole-cell bioreporter typically comlas a promoter—operator region in
a bacteria host, which acts as the sensing dewitie a reporter gene encoding for an
easily detectable protein (Robbens et al., 2016¢ Unique feature of ‘whole-cell’ is
that living microbial cells are used to obtain Hieavailable effects of a stimulus (Gu
et al., 2004). Without the need of precise chemidaracterization, whole-cell
bioreporters are compact, portable, cost-effecéimd simple to use, providing an
alternative approach for evaluating the general aictg of individual or mixed
chemicals (Vollmer and Dyk, 2004; Nagata et al.1®0 Normally, whole-cell
bioreporters are classified into two categoriese @nresponsive to specific toxicity
pathways and induced in the presence of specifitpocninds or their analogues with
similar structure, such as alkanes (e.g., alkamggadation pathway) (Sticher et al.,
1997; Wang et al., 2016), naphthalene (e.g., népibadegradation pathway)
(Neilson et al.,, 1999), polycyclic aromatic hydrdmans (e.g., phenanthrene

mineralization) (Tecon et al., 2009) and mercuryerearic resistant regulatory
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pathway) (Rasmussen et al., 2000). The others eamduced by general toxicity
pathways, including stressful conditions such asAllMmage (Vollmer et al., 1997;
Min et al., 1999; Biran et al., 2009), membrane dgen (Bechor et al., 2002) and
oxidative damage (Lee and Gu, 2003). Bacterial $3gonse is a global response
to DNA damage in which the cell cycle is arrestad ®NA repair and mutagenesis
are induced (Radman and Prakash, 1973; Little andn¥] 1982). RecA is essential
in the SOS response BEcherichia coliresponsible for DNA repair/maintenance via
homologous recombination (Horii et al., 1980). diere, therecA-based whole-cell
bioreporters are widely used for measuring generactity, capable of detecting not
only the levels but also mechanisms of DNA dam&®erénsen et al., 2006; Ron,
2007), including DNA cross-linking and delayed DN$ynthesis, alkylation and
hydroxylation of DNA (Min and Gu, 2003; Chen et, &008). As most genotoxins are
inducers of the SOS response (Quillardet et alg2),9therecA-basedbioreporter
assay is introduced in genotoxicity assessmenaf@mental samples.

The use of living microorganisms as the sensingneids of a whole-cell
bioreporter has several advantages over other aiss@y as enzymes, antibodies, or
sub-cellular components based tests (Shin, 20i@tly microorganisms can be
genetically modified using mature protocols and assily prepared by simple
cultivation in relatively inexpensive media (Yuadt, 2006; Yagi, 2007). Secondly, a
correlation between genotoxicity as measured by rohial bioassays and
carcinogenicity in mammals has been found (Josegthyal., 1997), indicating

whole-cell reporters can help in diagnosing theltheasks of genotoxins to some
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extent. However, the microbial bioassay still sidfdrom a lack of eukaryotic

metabolic enzyme systems (Lah et al., 2007), lepttiruncertainties in extrapolating
the genotoxic potency of one chemical from bactavi@ukaryotic cells, especially
humans. Therefore, the whole-cell bioreporter asseyot replace the role of direct
measurement of carcinogenic effects in animalsuondns, but still can be feasibly
employed as a cost-effective and preliminary saérggtool to assess ecotoxicity in
environmental samples, particularly prior to wedtablished techniques (Alhadrami
and Paton, 2013).

Although many whole-cell bioreporters are developedense the presence of
specific chemicals or general toxicity, the majpot them are used still in laboratory
proofs of concept (van der Meer and Belkin, 201@).most cases, toxicities of
chemicals in water samples or water extractiongeatuated by the bioreporter assay
(Nagata et al., 2010; Zeinoddini et al., 2010; Asélet al., 2016). Recently, d&h
coli bioreporter recApr—Luc2 was built to detect theaexicity of heavy metals in
recycled ashes for livestock diets and evaluate tlss entering human food chain
(Sanchezvicente et al.,, 2016). Nevertheless, theelolement of whole-cell
bioreporters which are feasible in more complexirenvnental media (e.g., soils and
seawater) is still challenging (van der Meer antkiBe 2010; Michelini et al., 2013),
as bioreporter sensitivity and chemical bioavaligbi are influenced by
environmental variables (He et al., 2010; Jianglet2015). Many attempts are made
to overcome such barriers, and a limited numberbmfreporters have been

successfully applied in soils, seawater and groateiHe et al., 2010; Zhang et al.,
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2012a; Yoon et al., 2016). Moreover, new technigaesh as magnet-nanoparticles
functionalization (Zhang et al., 2011; Jia et 2016) and microchip (Cortés-Salazar
et al., 2013) are also developed to enhance bidepperformance in complex
environmental media.

The quantification of genotoxicity via a bioreportessay has been conducted
using two approaches. Taking the bioluminescentebpiarter as an example, the first
approach compares the induced bioluminescent sigoaer time for different
concentrations of target genotoxins to a negatorgrol. Here, the parameter defined
as the relative luminescent unit is derived, asnttost commonly used quantitative
method in bioreporter assays (Gu and Chang, 2084 eCal., 2010; Zeinoddini et al.,
2010). By taking the end-point bioluminescence iatett as a function of the
concentration series, the genotoxicity of unknoamgles can therefore be quantified
by interpolating their bioluminescent signals usthg calibration curve. The other
approach is to develop an analytical model for aledtell bioreporter to simulate
their behaviors based on the quantitative SOS respof DNA damage inducible
genes. Danielet al (2010) develops an analytical model of a whole-cell
bioluminescent bioreporter, with an input signaix{th concentration) and an output
signal (bioluminescent light). The model is chagaized by three measurable sets of
parameters: the biosensor effective rate congtamttotal number of emitted photons
and the biosensor reaction order, verified for theee DNA damage inducible
promoters, includingecA, katGandmicF. Recently, a gene cross-regulation model is

developed to simulate the SOS response ofAthbaylyi bioreporter (Zhang et al.,
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2012b). The model takes into consideration the ahyoavariation in free RecA and
single-stranded DNA (ssDNA)-bound RecA proteing] #me background expression
of luxCDABEgene, correlating the input signal (genotoxin comi@ion) and output
signal (bioluminescent light) with three empiricplarameters: SOS response
coefficient, genotoxicity coefficient and cytotoiic coefficient. Although the
mechanisms ofecA gene induction and SOS response are similaE.ircoli and
Acinetobacteibaylyi (Whitworth and Gregg-Jolly, 2000; Dolph et al.,02Q Hare et
al., 2006), this mode has not been applied=facoli bioreporter yet.

In the present study, a bioluminescent whole-deltdporter (Jiang et al., 2016)
was employed to evaluate the genotoxicities an@uaidabilities of mitomycin C
amended soils and seawater, which demonstratedbe effect relationships in both
environments. Two case studies were further coeduoh the bioreporter’s response
to chromium(VI) (Cr[VI]) contaminated soils and deioil contaminated seawater.
These two cases were chosen for the following reas Cr(VI) and crude oil are
representatives of inorganic (e.g. heavy metals) @ganic chemicals respectively
and have high contamination levels in many regmin&hina and worldwide (Jacobs
and Testa, 2005; Gao et al., 2015); ii) Cr(VI) andde oil are known as genotoxins
but with different mechanisms of DNA damage (Cokeal., 1993; Mietynska et al.,
2006), and it is therefore of great concern andoitgmce to study the genotoxicity
equivalent across different contaminants and enuiental media for their impacts
on ecosystems; iii) soil and seawater, with higtbitlity and salinity, are more

complex environmental media compared with laboyatmmditions and freshwater.
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For the first time, we modified the cross-regulatimodel inA. baylyi to predict the

guantitative response of thg&. coli bioreporter to environmental genotoxins.
Investigations on bioreporter performance in saigl seawater are beneficial for
overcoming the barriers of complex environmentaldimeand expanding the

application of bioreporters from the laboratoryptgentialin situmonitoring.

2 Materialsand Methods

2.1 Preparation, sampling and chemical analyssoibfand seawater samples
Atrtificial Cr(VI)-contaminated soils were preparbg mixing standard soils (Chinese
soil standards GBWO07403, GSS-3) with potassiumrditiate solution, and air-dried
for three days, followed by sieving through a 20shmescreen. The artificially
contaminated soils contained 5.2 mg Cr(VI)/g sofl @eight. A series of 0, 10, 20, 50,
100 and 200 mg artificial soil samples were indintlly mixed with 5 mL ultrapure
water to form a soil/water slurry with Cr(VI1). Theoil to water ratio had limited
effects on the bioluminescence intensity (Zhang.e2012a).

Cr(VI)-contaminated soil samples were taken frowe fsites (Henan, Hubel,
Shandong, Jiangsu and Liaoning Provinces) in Ci8od.samples were air-dried for
three days at room temperature and sieved throu@®-mesh screen. The soil
properties including pH, organic matter contentjoreexchange capacity, particle
size distribution, total/available nitrogen, phoafhand potassium were measured
according to previously described methods (Jiancalet 2014). The soils were

pretreated using two methods to compare the bitzdubiy and genotoxicity of
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Cr(VI) in different phases. The soil/water slursplid phase) was prepared by mixing
200 mg of each soil sample with 5.0 mL ultrapureéevand sonicated for 300 s. The
soil supernatant (water phase) was obtained byirsipake soil/water slurry at 200
rpm for 24 h at room temperature and centrifuge@iC®00xg for 15 min to remove
soil pellets.

Crude oil contaminated seawater samples were tetlemlong the coastline of
Jiaozhou Bay, where a severe oil spill occurre®8i November 2013. Due to the
leakage from underground oil pipelines, over 10087 kof pavement was
contaminated. Part of the crude oil entered JiaoZBay along with the rainwater
pipeline, resulting in the contamination of approately 3,000 krhof seawater. The
seawater samples were taken from five sites (Figuren Day 1, Day 3, Day 7 and
Day 50 after the oil spill, and directly stored 4@C for further genotoxicity
assessment and chemical analysis. Total petroleydrotarbons (TPHs) and
polycyclic aromatic hydrocarbons (PAHS) are thedprainant contaminants in crude
oil (Fathalla, 2007; Gao et al.,, 2015), which wenealyzed following the Gas
Chromatography-Flame lonization Detector (GC-FID) aGas Chromatography-
Mass Spectrometer (GC/MS) methods as described SnEBA 8015B (USEPA,
1996b) and US EPA 8270C (USEPA, 1996a), respegwtivel
2.2 Preparation of theéscherichia colbioreporter for genotoxicity assessments

The E. coli bioreporter for genotoxicity assessment was prepaceording to a
modified protocol by Kimand Man (Kim and Man, 2003) and optimized in our
laboratory (Jiang et al., 2016). In brief, the bporter cells were transferred into 10

10



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

mL of fresh LB medium supplemented with 100 mg/Lp&iilin (LBA medium) and
incubated at 37°C with shaking at 150 rpm for @lme bioreporter suspension was
diluted 1:25 in fresh LBA for use, and the optinmatial optical density at 600 nm
(ODsoo) for genotoxicity assessment was approximatelg QJang et al., 2016). Two
microliters of soil/water slurry or soil supernatamas directly mixed with 198L
bioreporter suspension for bioluminescence detectichilst the ratio for seawater
detection was 2@L of seawater with 18@L of bioreporter suspension. Deionized
water and mitomycin C amended soil/seawater samydes used as the negative and
positive controls, respectively. To prepare theomicin C amended soils, a series of
mitomycin C solutions at different concentrationsrev added to the soils in glass
tubes, and thoroughly mixed using a vortex (Son@lgt2014). The mitomycin C
amended seawater was acquired by dissolving assafrimitomycin C concentrations
in artificial seawater mineral salt medium (Jiangle 2016).

The bioluminescent intensity and @pof the bioreporter were measured every
15 min, with a Spectra M5 Plate Reader (Moleculavibes, California, USA), for 6
h at 37°C. Cell viability was estimated by colorguanting on LB agar plates. Briefly,
bioreporter cells exposed to different samples veatkected at different time points
and serially diluted. The 100l of dilution was spread on a LB agar plate and
incubated overnight (14-16 h) at 37°C for cell cimgp All treatments were carried
out in biological triplicates.

2.3 Data analysis and model simulation

11
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The induced bioluminescence of the bioreporter gahsulated by averaging the
monitored bioluminescent intensity from 150 and 18@. The induction ratio was
evaluated by dividing the induced bioluminescengethat of the negative control
(non-induced). The bioavailability of genotoxins svealculated as the fraction of
genotoxins detected by the bioreporter assay, @ivigly their total concentrations in
the environmental samples. All statistical analysese performed using SPSS 17.0.
One-way ANOVA was employed to evaluate the stati$ésignificance of differences
and variance (p-value<0.05).

Based on the similar mechanismsretA gene induction and SOS response
betweenE. coli and Acinetobacteibaylyi (Dolph et al., 2001; Hare et al., 2006), we
modified the cross-regulation model An baylyi (Zhang et al., 2012b) to predict the
guantitative response &. coli bioreporter to genotoxins. Different from the respe
of regulator to specific chemicals (Zhang et a&012b), the DNA damage response in
the present study is simplified as five steps: lallkgn/methylation of DNA,
formation of ssDNA, cleavage of LexA repressor dsnelLexA repressor's
self-cleavage, and expression of DNA damage indeigibnes (Al-Anizi et al., 2014;

Jia et al., 2016). Induction of the bioreportesh®wn in Equation 1.

sspNA * KsLsr [genotoxin]

k
508, s =147~ [LSR]total : 1 i
genotoxicity kgenotaxicity *Kospna® KsLSR) + [genotoxm]

‘(1-K, ici
2(1 + kssuNA) ( Cytotoxtctty)

1)
Here, Kyenotoxin iS defined as the methylation rate of double-stean DNA.

Damaged double-stranded DNA results in a certairowni of ssSDNA with the

synthesis ratek(enotoxin)- The recognition of ssDNA by RecA consequentlyses

12
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the cleavage of LexA-like SOS repressaSR, cell™), where dLSR (cell) and
sLSR (cell™) represent the.SR dimer (SOS box repressor) and monomer (SOS box
activator), respectively[LSR];o:as (cell) represents the total amount of SOS
repressor, andgpys iS the cleavage reaction constantISfR dimer. K ;s and
K, sz determine the dynamic equilibrium oLSR dimer and monomer.
[genotoxin] (cell™) refers to the number of genotoxins inside théscand S0S; s
represents the induced SOS response ratio. Tha&p8nse coefficient is defined as
Kgenotoxin * Kgenotoxin * Ksspna * Ksisr, Which demonstrates the synergetic effects of

DNA damage, ssDNA recognition and SOS box promotf,otoxicicy 1S the

genotoxicity coefficient, representin’ﬁM- [LSR]totar-

(1+ksspna)

Cytotoxicity is also taken into consideration i ttross-regulation model as the
response of bioreporters is a synergistic effedbaih genotoxicity and cytotoxicity.
Cytotoxicity is simulated in accordance with thehibition effects of cytotoxic
compounds on protein activities, as described inafgn 2 with the cytotoxicity
coefficient ¢y toxicity)-

k;;toxicity
)

+[genotoxin]

Cell activities = —;
cytoxicity

Three parameters are involved in the cross-reguiathodel: SOS response
coefficient, genotoxicity coefficient and cytotoitic coefficient. By fitting the
experimental data with nonlinear regression in SRB& coefficients were obtained
for a calibration curve correlating genotoxin (emitomycin C) concentration with
the induction ratio. For unknown environmental skspthe induction ratio of the

bioreporter was first obtained, followed by integimn using the calibration curve to
13
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obtain the mitomycin C equivalent, thus resultingthhe quantitative evaluation of

genotoxicity among different environmental media.

3 Results and Discussion

3.1 Modelling of theE. colibioreporter response to artificial samples

TheE. coli bioreporter demonstrated a sensitive dose-efesgianse to mitomycin C
amended soils and seawater, ranging from 0.1 nMill (Figure S1). The negative
control expressed a consistent baseline of biolastence. The bioluminescence
intensity of the bioreporter increased with mitoimy€ concentration, and peaked at
approximately 180 min. The detection limit for rmtgcin C was 1 nM in both soils
and seawater. Mitomycin C concentrations up toM. did not affect cell viability
(Jiang et al., 2016).

The bioreporter was non-responsive until 120 min doil and 180 min for
seawater. The SOS process is not momentary, insteadving the processes of
alkylation/methylation of DNA, formation of singktranded DNA, cleavage of LexA
repressor dimers, LexA repressor's self-cleavagk expression of DNA damage
inducible genes. Only afterwards, the expressiobiaiuminescentuxCDABEgene
is triggered for mRNA transcription and proteinnskation (Michel, 2005). Besides,
the responsive time is relevant to DNA damage mashss. Min et al. (1999)
demonstrated that direct DNA damage reagents camediately induce
bioreporter response, but indirect DNA damage takese than 100 mirDue
to the similar mechanism of DNA damage responswdmtA. baylyiand E. coli

14
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(Hare et al., 2012), the cross-regulation model maslified to simulate th&. coli
bioreporter’s response to mitomycin C. In the pnésgudy, the induction ratio was
calibrated against mitomycin C, and the experimedtta fitted well with the

cross-regulation model (Figure 1).

50 - A 50 4 B
45 A 45 A
4.0 - 4.0
3.5 4 12=0.9853 £33 10,9866
2 30 4 §3.0
E 25 225
% 2.0 A 220
Z 15 ~ = 1.5 4
£ 1.0 » : 1.0 +- T
0.5 + 0.5 A
0.0 - 0.0
0.001 0.1 10 1000 0.001 0.1 10 1000
Mitomycin C concentriation (nM) Mitomycin C concentriation (nM)

Figure 1. The dose-effect relationship of the induction radfothe E. coli bioreporter to
mitomycin C (from 0 to uM) amended soils (A) and seawaters (B). The sdidkdots
represent the relative bioluminescence (RB) ofltioeeporter induced by mitomycin C, and
the red line is the fitting curve of the cross-rfagion model. Error bars indicate the standard

deviations of the replicates.

Two key parameters(Kgenoroxicicy and SOS response coefficient) were
introduced in this model as cytotoxicity was neiglig when mitomycin C
concentration was below @M. A comparison ofK;enotoxicicy @Nd SOS response
coefficient of mitomycin C between different envirnental media is shown in Table
1. From Equation (1) and dimensional homogeneitg tnit of SOS response

coefficient Kyenotoxin * Kgenotoxin * Kssona * ksisr) 1S reciprocal to genotoxin unit

15
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344

(nM/L). The SOS response coefficients in deionineder (0.004 L/nM), soil (0.003
L/nM) and seawater (0.003 L/nM) did not signifidgrdiffer, indicating the identical
mechanism of mitomycin C-induced SOS response psoicedifferent environmental
media, including the integrated effects of DNA damassDNA recognition and SOS
box promotion. Nevertheless, the valuesKt otoxicicy Were significantly reduced
in soils (4.5) and seawater (4.3) compared with ithdeionized water (12.5). For soill
samples, the lowered;enotoxicicy Was possibly attributed to the relatively lower
bioavailability of mitomycin C caused by the coneplied soil-cell-chemical
interactions, which was consistent with previouslss (He et al., 2010; Violante et
al., 2010; Weng et al., 2010). For the seawatempszsnhigh salinity may explain the
decline in bioluminescent signals and the decred&gd,coxicicy- Moreover, for a
given sample with unknown genotoxicity, the mitommy€ equivalent can be derived
by interpolating its induction ratio using the badition curve in the same
environmental medium, enabling the comparison ofogxicities between different
environmental samples with mitomycin C as the stathdMitomycin C was chosen
as the standard genotoxin in the present studisd3NA damaging mechanism has
been established to be alkylation (Abraham et28l06), and it has been extensively
used as a model genotoxin in many studies (Volleted., 1997; Polyak et al., 2001;
Tani et al., 2004; Aranda et al., 2013). It is cléeat no single genotoxin can cover all
the DNA damaging mechanisms inducing the bioreporesponse, and one
environmental sample with an undefined composipossibly contains more than
one DNA-damaging reagent with different genotoxiecimanisms. However, the

16



345 calculated mitomycin C equivalent gives a detailedight into the contents of
346  mitomycin C-like reagents in environmental sampl@slA-damaging reagents with
347 distinct genotoxic mechanisms such as N-methyli#do+N-nitrosoguanidine
348 (MNNG) and 4-Nitroquinoline N-oxide (4-NQO) can alde employed for the
349  calibration curve and genotoxicity quantification.
350 Table 1 Comparison ofKgenotoxicity @nd SOS response coefficient of mitomycin C in
351  different environmental media.
SOS response coefficient
Environmental media Kgenotoxicity Reference
(L/nM)
Sail 4.5 0.003 (Jiang et al., 2016)
Seawater 4.3 0.003 This study
Water 12.5 0.004 This study

352 3.2 Response of the bioreporter to Cr(VI) contatedaoils
353  The genotoxicity and bioavailability of Cr(V1) irrtdicially contaminated soils were
354 assessed by tHe. coli bioreporter (Figure 2, blank squares). We intredlia simple
355 ultrasonic pretreatment (300 s) to prepare the/veaiér slurry, which was
356 subsequently mixed with the bioreporter cells diyec All the artificially
357 contaminated soils positively induced the bioreg@owtithin 3 h. The concentration of
358  Cr(VI) in soils ranged from 2 to 20mol/L, and higher concentrations of Cr(VI)
359 induced stronger bioluminescent signals of the dmorter, showing a dose-effect
360 relationship. Cr(VI) has been demonstrated to iedywoteomic changes in
361 Pseudomonas aeruginogiilic et al., 2010), as well as inhibiting lightression of a
362 luminescent bacteria (Villaescusa et al., 1997)th& highest Cr(VI) concentration
363  (40uM), the cell viability of bioreporter was not sigieantly affected from cell count
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(Figure S2), but a significant reduced inductiortiorawas observed, possibly
attributed to the inhibition of protein synthesiEhe assay allowed direct contact
between the bioreporter cells and soil particlagbéing the detection of contaminants
in free water, bound water and soil-fixed fractighie et al., 2010; Ore et al., 2010;

Zhang et al., 2010; Song et al., 2014).

50 4 o Cr amended soils
45 4 =—100% bioavailability
40 A —50% bioavailability
—25% bioavailability
10% bioavailability

35 A
3.0 A
2.5 A
2.0 H
L5 A
1.0 +
0.5 ~

0.0 -
0.1 1.0 10.0 100.0

Induction Ratio

Cr(VI) concentration (M)

Figure 2. The response of thiE. coli bioreporter to artificial chromium contaminatedlso
The white squares refer to the induction ratio lné E. coli bioreporter. The red line
represents the fitting curve of the cross-regutatinodel to simulate the bioreporter’s
response to chromium toxicity with 100% bioavailiyi followed by different levels of
chromium bioavailability such as 50% (green lirg5% (purple line) and 10% (yellow line),

respectively. Error bars indicate the standardat®ns of the replicates.

Concentration of Cr(VI) in contaminated sites cobé&up to several hundred to
several thousand (100 to 10000) mg/kg (Jiang et@ll4; Ogunkunle et al., 2014).
And as regulated by EPA, the total Cr (no regukatior Cr[VI]) for generic soil
screening levels at contaminated site is 390 mégkgngestion, and 2.0 mg/kg for
migration to groundwater (USEPA, 1996). We therefoonsider 2.0 mg/kg as the

background concentration of Cr, and the generidatnimation level of Cr(VI) in
18



382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

soils ranges from 390 mg/kg to 10000 mg/kg. Acamgdp the protocols described in
the present study (in section 2.1), the detectaomge of the bioreporter for Cr(VI)

ranges from 260 mg/kg to 2600 mg/kg. Thus, thedporter assay is capable of
covering routine detection of Cr(VI).

Bioavailability is a parameter to evaluate the patage of contaminants which
are accessible and detectable by the bioreporsayaSome fractions of contaminants
may interact with environmental media, such as gqumalticles, and become
unavailable to living microorganisms. Therefore, some cases, environmental
samples with the identical levels of contaminatéghtnhave different toxicities. The
cross-regulation model was also used here to stmtitee bioreporter’s response to
the bioavailable fraction of Cr(VI) in soils (Figur2). The red line (100% of
bioavailability) assumes that all Cr(VI) in the Isois bioavailable to the bioreporter,
and its genotoxicity can be detected by the biotep@ssay. Meanwhile, the 50% of
bioavailability curve simulates the response of biereporter when only 50% of
Cr(VI) can be sensed. Lower simulated Cr(VI) biakklity (50%, 25% and 10%)
leads to a shift in the calibration curves towandger chromium values. The actual
induction of the bioreporter (shown as blank sgsieveas significantly lower than the
red line, indicating that a minor fraction of Cr{Mivas bioavailable to positively
induce the bioreporter response. The inductiorosadi the bioreporter to artificially
contaminated soils were all located within the dilné 25% and 100% bioavailability,
which was possibly explained by the complex inteoas between soil particles,
microorganisms and Cr(VI) (Flynn et al., 2002; kas$ al., 2002). The SOS response
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404  coefficient (0.125 LiM) and genotoxicity coefficienK;enotoxicity (3-3) for Cr(VI)
405 in the present study were derived from the biorepar response to Cr(VI) in the
406 aqueous phase (data not shown). These parametaanesl stable for all the
407 calibration curves, which was similar to previoasearch (Jia et al., 2016).
408 The bioreporter assay was then used to evaluategénetoxicities of real
409  Cr(VI)-contaminated soils taken from five contamathsites in China (Figure S3).
410 Contamination levels in the soil samples are listedTable 2. The soils were
411  pretreated in either soil/water slurry or soil suyaant, and the induction ratios of the
412  bioreporter were measured for both treatments. mijton C equivalents were
413  calculated based on the calibration curves, whithwed significant differences in
414  soil/water slurry and soil supernatant (Table 2he Tbioavailable Cr(VI) in soll
415  supernatant was only a minor fraction of that inl/\sater slurry, which varied
416  between 6.16% and 30.79%, indicating that most mhmm was fixed on soil
417  particles and showed greater genotoxicity. For saihples with Cr(VI) concentration
418 less than 1000 mg/kg dry soil weight, the bioregonvas significantly induced
419  without affecting cell viability from the results cell count (data not shown). For
420 soils S7 and S8 which were heavily contaminatedh Wit(V1), cell viability of the
421  bioreporter was inhibited in both soil/water sluagd soil supernatant, suggesting
422  that the genotoxicity in these soils was more thaiM of mitomycin C equivalent.
423  Table 2 Mitomycin C equivalent of Cr(VI) contaminated sahmples using different
424  pretreatment methods.

Sample Induction  Mitomycin C Induction Mitomycin C Percentage of Cr(VI Cr(VI)

No.

ratio equivalent ratio (soil equivalent (soil  (slurry/supernatant, %) concentration

20



(soil/lwater  (soil/water  supernatant) supernatant, nmol/L) (mg/L)
slurry) slurry, nmol/L)

S4 1.92+0.06 77.09+£2.50 1.89+0.04  18.95+0.45 24.58 111.91
S15 2.21+0.09 110.33+4.37 2.09+0.09 23.62+1.05 ri1.4 122.68
S6 1.96+0.05 81.36+£2.17 2.15+0.11  25.05+1.30 30.79 388.51
S13 3.57+0.14  399.48+15.79 2.77+£0.14  40.79+2.69 210. 390.43
S2 2.50+0.08 150.00+4.73 1.45+£0.08 9.23+0.90 6.16 499.35
S14 2.20£0.11  109.09+15.50 1.80+0.11 16.91+0.44 50L5. 499.35
S7 1.78+0.05 >1000 1.78+0.05 >1000 26.16 7088.57
S8 2.04+0.08 >1000 1.74+0.08 >1000 17.25 7505.02

425 Interestingly, the response of the bioreporter ¢dl samples with similar

426  contamination levels (S4/S15, S6/S13, S2/S14, §#&8 different, possibly due to

427  different bioavailability or forms of chromium. Werther analyzed different forms of

428  chromium in soils using th@essier method (Tessier et al., 1979). The composif

429  chromium showed notable differences (Figure 3).o0@hom bound to iron and

430 manganese was the predominant form in all soilsideal chromium in a stable form

431 was less accessible to the bioreporter to actigatmtoxicity response. For example,

432  the lower residual chromium in soil S15, comparéith what in soil S4, led to a higher

433  genotoxic response of the bioreporter. More excbablg and carbonate-bound

434  chromium in soil S2 also contributed to more geriity than that in soil S14. The

435 Cr(VI) forms have a causal relationship with diffet processes related to soil

436  properties, including dissolution, ion exchangejimentation, complex formation,

437  oxidation and reduction (Roberto Terzano et alQ72@hao et al., 2009). Therefore,

438  soil properties influence the occurrence, tranggtion and fate of chromium in the

439  soil environment (Lubomir Simeonov, 2008), of whitie most important ones are
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identified as soil acidity, cation exchange capaaitd soil organic matter (Wazne et
al., 2007). For instance, the acidity of soil smint(pH) determines the possibility of
an equilibrium transition of different forms of @dmium, from steadily bound forms
with humic substances to water soluble ion formd slightly bound exchangeable
forms on clay colloids (Lubomir Simeonov, 2008).the present study, the ANOVA
test showed that the soil pH had significant effech the bioreporter response

(p<0.05).

~

» &
@ © ©

= Exchangeable

u Bound to Carbonates

Bound to Iron and
Manganese Oxides

= Bound to Organic
Matter

= Residual

Figure 3. Different forms of chromium in soil samples (Tessiethod).

3.3 Response of the bioreporter to crude oil comtated seawater

The sampling sites of seawater samples taken fraozldou Bay are shown in Figure
4, and they were collected on Day 1, Day 3, Dayd Ray 50 after the oil spill for
genotoxicity evaluation. The predominant contamisan the seawater samples were
total petroleum hydrocarbons (TPHs) and polycyalomatic hydrocarbons (PAHS),
and the contamination levels declined over timegyFé S4). TPHs and PAHs

concentrations at Day 50 after the oil spill deseshto less than 10% of the original
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contamination levels (Day 1). Seawater S3 was tlest montaminated point with

TPHs and PAHs concentrations as high as 685.45 namid 351.36 mg/L,

respectively, and alkanes £C,6), naphthalene and phenanthrene were the dominant

contaminants (Figure S5). A sudden increase inatoimant concentrations was

observed on Day 15 after the oil spill in seaw&®andS2, suggesting the migration

of crude oil from point S3 to S1 and S2. Contamiganere naturally attenuated

through the dilution, spreading, dispersion, evapon and emulsification effects of

seawater, along with the artificial oil-absorbirgjtfand other emergency measures

taken (Fathalla, 2007; Zhang et al., 2013).

Sample No. Location

S1 E120°12°16.824",N36°3°44.772"
S2 -

S3 E120°11°45.504",N36°3°45.240"
S5 E120°10°3.300",N36°4°33.102"
S6 E120°13°23.370",N36°2°46.482"

Jiaozhou Bay

-

S2

312

contamnant
concentration (v

-

O MO U 4

contaminant

concentration (mg/l
oM E o » o

contaminant
concentration (mg/L.)

DI D3 D7 D30

D1 D3 D7 D30

g
o

g

=)

contaminant
concentration (mg/L.)

D1 D3 D7 D30

concentration (mg/L.)

- 1D
[~

LKoo o = ow

o

D3 D7 D50

S6

D1 D3 D7 D30

Figure 4. The sampling sites in Jiaozhou Bay. Total petmwldwdrocarbons (TPHs, white

bar) and total polycyclic aromatic hydrocarbons BAblack bar) in seawater samples (1, 3,

7 and 50 d after the oil spill) are shown in srpadtures.
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The induction ratios of th&. colibioreporter to seawater samples are shown in
Figure 5. All the samples positively induced therbporter response on Day 1 and
Day 3 after the oil spill. With regard to the camiaant concentrations, the detection
limit of the bioreporter to crude oil contaminateeghwater was at the mg/L level. The
bioluminescent intensities of the bioreporter wdramatically lowered in seawater
samples taken on Day 7 and Day 50 after the dil, $wwever, cell viability was not
inhibited. This is possibly due to the mild inhdry effects or cytotoxicity of oil
degradation products after Day 7, as crude oiltis capable of releasing toxic
compounds into seawater by photo-oxidation whery e extensively degraded

(Maki et al., 2001).

1.4 - @Dl oD3 &8D7 &D50

“ 'I'-I_ & 3 _I_%

Induction ratio

N

~
|

11|

S1 S2

Figure 5. The induction ratio of th&. coli bioreporter to seawater samples collected from
Jiaozhou Bay (1, 3, 7 and 50 d after the oil spiihe black dashed line marks the induction
ratio of 1.0. The bioreporter was significantly uogd by seawater samples. Error bars

indicate the standard deviations of the replicates.

Mitomycin C equivalents in seawater samples on Dapnd Day 3 were
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calculated using the calibration curve shown inuFeglB (Table 3). Mitomycin C
equivalents in seawater S3 and S6 showed a signifabecline over time. In contrast,
although a slight decrease in contaminant concaorisawas observed in seawater S1
and S2 by chemical analysis (Figure S4), the genmwityp test showed higher
mitomycin C equivalents of S2 on Day 3 comparechvidy 1. This was possibly
caused by the integrated effects of various oilraégtion products detected by the

bioreporter.

Table 3 Mitomycin C equivalent in oil contaminated seawate

Sample No. Mitomycin C equivalent (nmol/L)
D1-S1 10.77+0.19
D1-S2 9.65+0.18
D1-S3 ~222.1+7.4C
D1-S5 8.09+0.08
D1-S6 5.64+0.04
D3-S1 10.72+0.09
D3-S2 12.52+0.19
D3-S3 ~160.15+4.83
D3-S5 -
D3-S6 2.14+0.03

Note: °The mitomycin C equivalents were calculated acemydio the induction ratios in
Figure 6.

*The mitomycin C equivalents were calculated acewydd the induction ratios in Figure 5.

As cell viability was inhibited in the original ssater S3 (1 d and 3 d after the
oil spill, data not shown), seawater S3 was furtliiuted 10 times with
uncontaminated background seawater S8 (N36°5'24E/120°29'40.92", not marked

in Figure 4). The induction ratio of the bioreporte the 10-times diluted S3 sample
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was significantly increased, without any inhibitiof cell viability. Therefore, the

mitomycin C equivalent of the original seawaterv&® estimated using the 10-times
diluted sample (Table 3). Regardless of the passhbnges in contaminant forms,
dilution eliminated the inhibition of cell viabilitcaused by high concentrations of
contaminants and allowed genotoxicity quantificatiof heavily contaminated

samples. Our result therefore suggested that @ilutiay be used to roughly estimate
heavily contaminated samples. The bioreporter agsayides as an appropriate
first-step monitoring system and an alternativechemical analysis (Harms et al.,

2006).

1.4 -
W original seawater

010 times diluted
1.3 A

Induction ratio
-
N

1.1 A

D1 D3

Figure 6. Induction ratio of theE. coli bioreporter to seawater S3 (1 d and 3 d afterothe
spill) with different dilution factors (1 and 1®rror bars indicate the standard deviations of

the replicates.

4 Conclusion

This study established a whole-cell bioreporteapdsr genotoxicity assessment of
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real environmental samples in harsh conditionduding soils and seawater. As no
currently available biological assay can provideatded or precise information on the
chemical composition of environmental samples, wile-cell bioreporter assay
provides a possible answer to the question of vemnethrgeted samples have
genotoxicity potentially possessing threats to gs®ns or microorganisms.
Moreover, the whole-cell bioreporter assay coupledth the modified
cross-regulation model and mitomycin C equivalemabdes the quantification and
comparison of genotoxicities between various emwirental samples. This assay can
provide suggestions for subsequent chemical arsatgsdetermine the precise type

and concentrations of genotoxins.
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*

A bioreporter evaluates genotoxicity and bioavailability of environmental

samples.
The bioreporter is used in real world scenario for risk assessment.
A gene regulation model is derived for SOS-based bioreporters.

The gene regulation model enables quantitative genotoxicity assessement.



