44 research outputs found

    Mutation in Folate Metabolism Causes Epigenetic Instability and Transgenerational Effects on Development

    Get PDF
    SummaryThe importance of maternal folate consumption for normal development is well established, yet the molecular mechanism linking folate metabolism to development remains poorly understood. The enzyme methionine synthase reductase (Mtrr) is necessary for utilization of methyl groups from the folate cycle. We found that a hypomorphic mutation of the mouse Mtrr gene results in intrauterine growth restriction, developmental delay, and congenital malformations, including neural tube, heart, and placental defects. Importantly, these defects were dependent upon the Mtrr genotypes of the maternal grandparents. Furthermore, we observed widespread epigenetic instability associated with altered gene expression in the placentas of wild-type grandprogeny of Mtrr-deficient maternal grandparents. Embryo transfer experiments revealed that Mtrr deficiency in mice lead to two distinct, separable phenotypes: adverse effects on their wild-type daughters’ uterine environment, leading to growth defects in wild-type grandprogeny, and the appearance of congenital malformations independent of maternal environment that persist for five generations, likely through transgenerational epigenetic inheritance.PaperFlic

    Human Hepatocytes with Drug Metabolic Function Induced from Fibroblasts by Lineage Reprogramming

    Get PDF
    SummaryObtaining fully functional cell types is a major challenge for drug discovery and regenerative medicine. Currently, a fundamental solution to this key problem is still lacking. Here, we show that functional human induced hepatocytes (hiHeps) can be generated from fibroblasts by overexpressing the hepatic fate conversion factors HNF1A, HNF4A, and HNF6 along with the maturation factors ATF5, PROX1, and CEBPA. hiHeps express a spectrum of phase I and II drug-metabolizing enzymes and phase III drug transporters. Importantly, the metabolic activities of CYP3A4, CYP1A2, CYP2B6, CYP2C9, and CYP2C19 are comparable between hiHeps and freshly isolated primary human hepatocytes. Transplanted hiHeps repopulate up to 30% of the livers of Tet-uPA/Rag2−/−/γc−/− mice and secrete more than 300 μg/ml human ALBUMIN in vivo. Our data demonstrate that human hepatocytes with drug metabolic function can be generated by lineage reprogramming, thus providing a cell resource for pharmaceutical applications

    Genomic Analyses Reveal Mutational Signatures and Frequently Altered Genes in Esophageal Squamous Cell Carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets

    Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (P interaction  = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications

    Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population.

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications

    Glucose-regulated proinsulin secretion from liver cells

    No full text
    Bibliography: p. 112-118Some pages are in colour

    Phytochemical composition, antioxidant, anti-tyrosinase, anti-cholinesterase, and anti-inflammatory activities of Rhynchanthus beesianus rhizome extracts

    No full text
    Rhynchanthus beesianus is a medicine food homology plant, and its rhizome is a food spice and traditional Chinese medicine used to treat inflammation-related disorders. Still, little research has been done on its phytochemicals and biological activities. Therefore, this study firstly reported the phytochemical analysis by UHPLC-Q-Orbitrap-MS, antioxidant, anti-enzymatic, and anti-inflammatory effects of R. beesianus rhizome water extract (WE) and 70% ethanol extract (EE). For phytochemical analysis, WE and EE had high total phenolic (25.57–28.19 mg GAE/g extract) and flavonoid (10.57–28.08 mg RE/g extract) contents, and further UHPLC-Q-Orbitrap-MS test identified sixty-one compounds, including twelve phenolic compounds and six flavonoids. In the antioxidant assay, WE and EE showed significant DPPH (IC50: 83.93 ± 5.90 and 69.48 ± 1.57 μg/mL, respectively) and ABTS (IC50: 73.46 ± 0.69 and 40.72 ± 0.67 μg/mL, respectively) radical scavenging ability, especially the efficacy of EE was superior or equivalent to that of positive control BHT. Moreover, the WE and EE exhibited poor inhibition on acetylcholinesterase (IC50: 3.31 ± 0.16 and 3.53 ± 0.14 mg/mL, respectively), butyrylcholinesterase (IC50: 1.29 ± 0.02 and 0.75 ± 0.08 mg/mL, respectively), and tyrosinase (IC50: 5.91 ± 0.63 and 21.30 ± 1.52 mg/mL, respectively). Interestingly, EE showed remarkable inhibition on NO, PGE2, IL-6, and TNF-α produced by LPS stimulation without cytotoxicity. It reduced ROS generation and down-regulated mRNA and protein levels of iNOS and COX-2 in LPS-stimulated RAW264.7 macrophages. Besides, EE decreased LPS-stimulated MAPKs (ERK, p38, and JNK) phosphorylation and inhibited NF-κB p65 nuclear translocation by suppressing the phosphorylation and degradation of IκBα. Therefore, R. beesianus can be used as a promising natural antioxidant, enzyme inhibitor, and anti-inflammatory agent with great exploitation potential in functional food and pharmaceuticals
    corecore