196 research outputs found

    Grey scale enhancement by a new self-made contrast agent in early cirrhotic stage of rabbit liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of new ultrasound contrast agents (UCAs) has become one of the most promising fields in ultrasound medicine. This paper evaluates a new self-made contrast agent enhancement effect developed to study the fibrotic stages of the liver in perfusion models <it>in vivo</it>.</p> <p>Methods</p> <p>We constructed experimental models of hepatic fibrosis involving five stages from F0 to F4 via administration of CCL<sub>4 </sub>(0.01 ml/kg BW) every 3 days for 3 months. The intrahepatic circulatory time of the contrast agent was analyzed via an image and Cine-loop display. Calculations of the perfusion-related parameters including the peak signal intensity (PSI) and peak signal intensity time (PIT) of the portal vein and parenchyma were obtained from an analysis of the time-acoustic intensity curve.</p> <p>Results</p> <p>Hepatic artery to vein transmit time (HA-HVTT) was significantly shorter at F4 stage (mean 5.1 seconds) compared with those in other stages (mean 8.3 s, 7.5 s, 6.9 s, 6.6 s, P < 0.01). The average PSI difference of PV-parenchyma was 13.62 dB in F4 stage, demonstrating significant differences between F4 stage and other early stages (P < 0.001).</p> <p>Conclusion</p> <p>These results indicate that the new self-made contrast agent is capable of indicating intrahepatic hemodynamic changes. HA-HVTT and the PSI difference of the microbubble perfusion in liver parenchyma and PV were considered to differentiate the degree of hepatic fibrosis between F4 and other early stages.</p

    Ecological expected utility and the mythical neural code

    Get PDF
    Neural spikes are an evolutionarily ancient innovation that remains nature’s unique mechanism for rapid, long distance information transfer. It is now known that neural spikes sub serve a wide variety of functions and essentially all of the basic questions about the communication role of spikes have been answered. Current efforts focus on the neural communication of probabilities and utility values involved in decision making. Significant progress is being made, but many framing issues remain. One basic problem is that the metaphor of a neural code suggests a communication network rather than a recurrent computational system like the real brain. We propose studying the various manifestations of neural spike signaling as adaptations that optimize a utility function called ecological expected utility

    The genetic legacy of extreme exploitation in a polar vertebrate

    Get PDF
    Understanding the effects of human exploitation on the genetic composition of wild populations is important for predicting species persistence and adaptive potential. We therefore investigated the genetic legacy of large-scale commercial harvesting by reconstructing, on a global scale, the recent demographic history of the Antarctic fur seal (Arctocephalus gazella), a species that was hunted to the brink of extinction by 18th and 19th century sealers. Molecular genetic data from over 2,000 individuals sampled from all eight major breeding locations across the species’ circumpolar geographic distribution, show that at least four relict populations around Antarctica survived commercial hunting. Coalescent simulations suggest that all of these populations experienced severe bottlenecks down to effective population sizes of around 150–200. Nevertheless, comparably high levels of neutral genetic variability were retained as these declines are unlikely to have been strong enough to deplete allelic richness by more than around 15%. These findings suggest that even dramatic short-term declines need not necessarily result in major losses of diversity, and explain the apparent contradiction between the high genetic diversity of this species and its extreme exploitation history

    Positive Selection within the Schizophrenia-Associated GABA(A) Receptor β(2) Gene

    Get PDF
    The gamma-aminobutyric acid type-A (GABA(A)) receptor plays a major role in inhibitory neurotransmissions. Intronic SNPs and haplotypes in GABRB2, the gene for GABA(A) receptor β(2) subunit, are associated with schizophrenia and correlated with the expression of two alternatively spliced β(2) isoforms. In the present study, using chimpanzee as an ancestral reference, high frequencies were observed for the derived (D) alleles of the four SNPs rs6556547, rs187269, rs1816071 and rs1816072 in GABRB2, suggesting the occurrence of positive selection for these derived alleles. Coalescence-based simulation showed that the population frequency spectra and the frequencies of H56, the haplotype having all four D alleles, significantly deviated from neutral-evolution expectation in various demographic models. Haplotypes containing the derived allele of rs1816072 displayed significantly less diversity compared to haplotypes containing its ancestral allele, further supporting positive selection. The variations in DD-genotype frequencies in five human populations provided a snapshot of the evolutionary history, which suggested that the positive selections of the D alleles are recent and likely ongoing. The divergence between the DD-genotype profiles of schizophrenic and control samples pointed to the schizophrenia-relevance of positive selections, with the schizophrenic samples showing weakened selections compared to the controls. These DD-genotypes were previously found to increase the expression of β(2), especially its long isoform. Electrophysiological analysis showed that this long β(2) isoform favored by the positive selections is more sensitive than the short isoform to the inhibition of GABA(A) receptor function by energy depletion. These findings represent the first demonstration of positive selection in a schizophrenia-associated gene

    The Fragmented Mitochondrial Ribosomal RNAs of Plasmodium falciparum

    Get PDF
    The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis.The identification of 14 additional small mitochondrial transcripts from P. falciparum and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome.All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered

    Association between Alcohol Consumption and Cancers in the Chinese Population—A Systematic Review and Meta-Analysis

    Get PDF
    Alcohol consumption is increasing worldwide and is associated with numerous cancers. This systematic review examined the role of alcohol in the incidence of cancer in the Chinese population.Medline/PubMed, EMBASE, CNKI and VIP were searched to identify relevant studies. Cohort and case-control studies on the effect of alcohol use on cancers in Chinese were included. Study quality was evaluated using the Newcastle-Ottawa Scale. Data were independently abstracted by two reviewers. Odds ratios (OR) or relative risks (RR) were pooled using RevMan 5.0. Heterogeneity was evaluated using the Q test and I-squared statistic. P<.01 was considered statistically significant.Pooled results from cohort studies indicated that alcohol consumption was not associated with gastric cancer, esophageal cancers (EC) or lung cancer. Meta-analysis of case-control studies showed that alcohol consumption was a significant risk factor for five cancers; the pooled ORs were 1.79 (99% CI, 1.47–2.17) EC, 1.40 (99% CI, 1.19–1.64) gastric cancer, 1.56 (99% CI, 1.16–2.09) hepatocellular carcinoma, 1.21 (99% CI, 1.00–1.46) nasopharyngeal cancer and 1.71 (99% CI, 1.20–2.44) oral cancer. Pooled ORs of the case-control studies showed that alcohol consumption was protective for female breast cancer and gallbladder cancer: OR 0.76 (99% CI, 0.60–0.97) and 0.70 (99% CI, 0.49–1.00) respectively. There was no significant correlation between alcohol consumption and lung cancer, colorectal cancer, pancreatic cancer, cancer of the ampulla of Vater, prostate cancer or extrahepatic cholangiocarcinoma. Combined results of case-control and cohort studies showed that alcohol consumption was associated with 1.78- and 1.40-fold higher risks of EC and gastric cancer but was not significantly associated with lung cancer.Health programs focused on limiting alcohol intake may be important for cancer control in China. Further studies are needed to examine the interaction between alcohol consumption and other risk factors for cancers in Chinese and other populations
    corecore