69 research outputs found

    Asymptotically Efficient Quasi-Newton Type Identification with Quantized Observations Under Bounded Persistent Excitations

    Full text link
    This paper is concerned with the optimal identification problem of dynamical systems in which only quantized output observations are available under the assumption of fixed thresholds and bounded persistent excitations. Based on a time-varying projection, a weighted Quasi-Newton type projection (WQNP) algorithm is proposed. With some mild conditions on the weight coefficients, the algorithm is proved to be mean square and almost surely convergent, and the convergence rate can be the reciprocal of the number of observations, which is the same order as the optimal estimate under accurate measurements. Furthermore, inspired by the structure of the Cramer-Rao lower bound, an information-based identification (IBID) algorithm is constructed with adaptive design about weight coefficients of the WQNP algorithm, where the weight coefficients are related to the parameter estimates which leads to the essential difficulty of algorithm analysis. Beyond the convergence properties, this paper demonstrates that the IBID algorithm tends asymptotically to the Cramer-Rao lower bound, and hence is asymptotically efficient. Numerical examples are simulated to show the effectiveness of the information-based identification algorithm.Comment: 16 pages, 3 figures, submitted to Automatic

    Anti-parity-time topologically undefined state

    Full text link
    We constructed an anti-parity-time-symmetric photonic lattice by using perturbations. The results show the topological state will appear when the waveguide coupling constants κ1<κ2\kappa_1<\kappa_2; Interestingly, a state with undefined winding numbers occurs when κ1=κ2\kappa_1=\kappa_2, in which the light distributes only in the wide waveguides with equal magnitude distribution. Further studies show that the edge state will be strengthened by introducing defect for the topologically non-trivial case, while it will not affect the equal intensity transmission for the topologically undefined state. Our work provides a new way to realize the topological state and equally divided light transmission and might be applicable in optical circuits and optical interconnect

    A Robust and Powerful Set-Valued Approach to Rare Variant Association Analyses of Secondary Traits in Case-Control Sequencing Studies

    Get PDF
    In many case-control designs of genome-wide association (GWAS) or next generation sequencing (NGS) studies, extensive data on secondary traits that may correlate and share the common genetic variants with the primary disease are available. Investigating these secondary traits can provide critical insights into the disease etiology or pathology, and enhance the GWAS or NGS results. Methods based on logistic regression (LG) were developed for this purpose. However, for the identification of rare variants (RVs), certain inadequacies in the LG models and algorithmic instability can cause severely inflated type I error, and significant loss of power, when the two traits are correlated and the RV is associated with the disease, especially at stringent significance levels. To address this issue, we propose a novel set-valued (SV) method that models a binary trait by dichotomization of an underlying continuous variable, and incorporate this into the genetic association model as a critical component. Extensive simulations and an analysis of seven secondary traits in a GWAS of benign ethnic neutropenia show that the SV method consistently controls type I error well at stringent significance levels, has larger power than the LG-based methods, and is robust in performance to effect pattern of the genetic variant (risk or protective), rare or common variants, rare or common diseases, and trait distributions. Because of the SV method’s striking and profound advantage, we strongly recommend the SV method be employed instead of the LG-based methods for secondary traits analyses in case-control sequencing studies

    Deep groundwater cycle in Xiongxian geothermal field

    Get PDF
    ABSTRACT The deep karstic aquifer containing hot water is ideal for space heating and maybe also for geothermal power generation. The hot water is characterized by high single-well yield, low salinity, gravity injection and less impact on environment when it is exploited. In order to run a karstic geothermal field sustainably, it is of high importance to identify the local groundwater circulation pattern in the field. Here we take Xiongxian geothermal field as an example to get insights into the characteristics of local groundwater circulation in karstic aquifers. Groundwater samples and surface water samples were collected, and analyzed for their hydrochemical and isotopic contents. Results show that the TDS of groundwater in karstic aquifers is between 1.9 and 2.6 g/L. According to the data of water table, the local groundwater flow direction is from Southwest to Northeast. This is confirmed by the TDS data, which increases gradually in this direction. However, this is orthogonal to the regional groundwater flow direction that is from Northwest to Southeast. This phenomenon highlights the control of aquifer lithology and geological structures on the groundwater flow field. Isotopic data illustrates some oxygen isotope shifts, although the reservoir temperature is less than 90 ℃. Finally, a conceptual model is proposed to depict the deep groundwater cycle in Xiongxian geothermal field, which will serve as a basis for the further simulated model for exploitation strategy and could be used as a reference in similar karstic aquifers

    Branch point strength controls species-specific CAMK2B alternative splicing and regulates LTP

    Get PDF
    Regulation and functionality of species-specific alternative splicing has remained enigmatic to the present date. Calcium/calmodulin-dependent protein kinase IIβ (CaMKIIβ) is expressed in several splice variants and plays a key role in learning and memory. Here, we identify and characterize several primate-specific CAMK2B splice isoforms, which show altered kinetic properties and changes in substrate specificity. Furthermore, we demonstrate that primate-specific CAMK2B alternative splicing is achieved through branch point weakening during evolution. We show that reducing branch point and splice site strengths during evolution globally renders constitutive exons alternative, thus providing novel mechanistic insight into cis-directed species-specific alternative splicing regulation. Using CRISPR/Cas9, we introduce a weaker, human branch point sequence into the mouse genome, resulting in strongly altered Camk2b splicing in the brains of mutant mice. We observe a strong impairment of long-term potentiation in CA3-CA1 synapses of mutant mice, thus connecting branch point–controlled CAMK2B alternative splicing with a fundamental function in learning and memory

    Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude

    Get PDF
    Crucihimalaya himalaica is a close relative of Arabidopsis with typical Qinghai–Tibet Plateau (QTP) distribution. Here, by combining short- and long-read sequencing technologies, we provide a de novo genome sequence of C. himalaica. Our results suggest that the quick uplifting of the QTP coincided with the expansion of repeat elements. Gene families showing dramatic contractions and expansions, as well as genes showing clear signs of natural selection, were likely responsible for C. himalaica’s specific adaptation to the harsh environment of the QTP. We also show that the transition to self-pollination of C. himalaica might have enabled its occupation of the QTP. This study provides insights into how plants might adapt to extreme environmental conditions

    PRPF8-mediated dysregulation of hBrr2 helicase disrupts human spliceosome kinetics and 5´-splice-site selection causing tissue-specific defects.

    Get PDF
    The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches
    • …
    corecore