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ABSTRACT In many case-control designs of genome-wide association (GWAS) or next generation sequencing (NGS) studies, extensive
data on secondary traits that may correlate and share the common genetic variants with the primary disease are available. Investigating
these secondary traits can provide critical insights into the disease etiology or pathology, and enhance the GWAS or NGS results.
Methods based on logistic regression (LG) were developed for this purpose. However, for the identification of rare variants (RVs),
certain inadequacies in the LG models and algorithmic instability can cause severely inflated type I error, and significant loss of power,
when the two traits are correlated and the RV is associated with the disease, especially at stringent significance levels. To address this
issue, we propose a novel set-valued (SV) method that models a binary trait by dichotomization of an underlying continuous variable,
and incorporate this into the genetic association model as a critical component. Extensive simulations and an analysis of seven
secondary traits in a GWAS of benign ethnic neutropenia show that the SV method consistently controls type I error well at stringent
significance levels, has larger power than the LG-based methods, and is robust in performance to effect pattern of the genetic variant
(risk or protective), rare or common variants, rare or common diseases, and trait distributions. Because of the SV method’s striking and
profound advantage, we strongly recommend the SV method be employed instead of the LG-based methods for secondary traits
analyses in case-control sequencing studies.
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TO date, genome-wide association studies (GWAS) world-
wide have detected several thousands of common single-

nucleotidepolymorphisms(SNPs)with small ormoderate risk
for over 200 diseases or traits. These GWAS usually originate

in a study design focusing on a specific primary trait, such as a
case-control design for Parkinson’s disease (Simón-Sánchez
et al. 2009), bipolar disorder, or coronary artery disease
(Wellcome Trust Case Control Consortium 2007). Often, be-
sides the primary case-control data, data on many secondary
traits that may share the same associated genetic variants
with the primary disease are also measured, and are readily
available. Nowadays, analyses of secondary traits beyond
GWAS have gained prominence because assessing the genet-
ic association of secondary traits may provide critical insights
into disease etiology or pathology. For example, a common
variant (CV) in the FTO (fat mass and obesity associated)
gene predisposes individuals to diabetes through the effect
on body mass index (BMI)/obesity (Flayling et al. 2007).

Copyright © 2017 by the Genetics Society of America
doi: 10.1534/genetics.116.192377
Manuscript received June 6, 2016; accepted for publication December 29, 2016;
published Early Online December 30, 2016.
Supplemental material is available online at www.genetics.org/lookup/suppl/doi:10.
1534/genetics.116.192377/-/DC1.
1These authors contributed equally to this work.
2Corresponding authors: Department of Biostatistics, St. Jude Children’s Research
Hospital, Memphis, TN 38105. E-mail: Guolian.kang@stjude.org; and Institute of
Mental Health, Key Laboratory of Mental Health, Ministry of Health & National Clinical
Research Center for Mental Disorders, Sixth Hospital, Peking University, Beijing
100191, People’s Republic of China. E-mail: dryue@bjmu.edu.cn.

Genetics, Vol. 205, 1049–1062 March 2017 1049

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/304663582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.192377/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.192377/-/DC1
mailto:Guolian.kang@stjude.org
mailto:dryue@bjmu.edu.cn


Other examples include Grundy et al. (2004), Kammerer
et al. (2004), Kathiresan et al. (2008), Loos et al. (2008),
Willer et al. (2008), Teslovich et al. (2010), and
Edmondson et al. 2011. Similar to GWAS, many ongoing
whole-genome, or whole-exome, next generation sequencing
(NGS) studies, such as the National Heart, Lung, and Blood
Institute (NHLBI) Exome Sequencing Project (Do et al.
2015), and the Cohorts for Heart and Aging Research in Ge-
nomic Epidemiology resequencing project (Lin et al. 2014),
also collect various secondary traits data besides the primary
trait data.

For genetic association analyses of secondary traits in a
case-control study, generalized regression methods are com-
monly used. The naïve application of regression modeling to
the secondary trait ignores the crucial fact that, in a case-
control study, the data are not a random, and representative
sample of the secondary trait if it is correlated with the pri-
mary trait (Lee et al. 1997; Lin and Zeng 2009; Monsees et al.
2009; Wang and Shete, 2011a; He et al. 2012). Several sta-
tistical methods have been developed for the secondary traits
analysis, taking into consideration the statistical design
issue. An inverse-probability-of-sampling-weighted regression
method (IPW) was used by incorporating sampling selection
probability into likelihood calculation, but the power was
generally low because of the method’s relatively large vari-
ance of parameter estimates (Monsees et al. 2009; Tapsoba
et al. 2014). The logistic regression (LG) method based on
retrospective likelihood conditional on disease status has
been applied to improve the power compared to IPW (Lin
and Zeng 2009). However, it has a severely inflated type I
error rate at stringent significance levels when there is corre-
lation between the two traits because of its assumptions of
the distributions of two traits and/or the instable algorithm
(Wang and Shete 2011b). Gaussian Copulas method (He
et al. 2012) was used to model the joint distribution of two
traits, and had power similar to that of LGmethod, andmain-
tained the type I error rate well at a significance level of 0.01.
The Wang and Shete’s (2011a) bias-correction method to
correct odds ratios controls the type I error rate well in sec-
ondary binary trait analysis (Wang and Shete 2011a), but
cannot be applied to secondary continuous traits. Aweighted
estimating equation method has also been proposed to han-
dle correlations between two traits, but it needs a bootstrap
procedure for hypothesis testing (Song et al. 2016). A repara-
meterized approximate profile likelihood has been developed
to correctly estimate the parameter when the interaction be-
tween secondary trait and genotype on the primary trait is
present (Ghosh et al. 2013). However, the performances of all
of the methods above are not investigated for the identifica-
tion of rare variants (RVs), and/or at stringent significance
levels. A common theme in all methods above is that the two
binary traits are modeled by logistic regression. This type of
model, however, frequently has a relatively large variance of
the parameter estimators, especially in extreme situations,
such as small sample sizes or RVs (Kang et al. 2014; Bi
et al. 2015). Therefore, in developing an efficient method

that takes into consideration the statistical design issues for
a secondary trait analysis, it is critical to use a more refined
statistical model, and a more robust computational
algorithm.

Binary traits are often derived from their underlying
continuous variables by splitting the range at some thresh-
olds and categorizing individuals above and below that
threshold into two separate groups of “affected” and “un-
affected.” For example, obesity is defined based on BMI,
“High” or “Normal” high density lipoprotein cholesterol
(HDL-C) is defined based on HDL, and “lower” or “Normal”
low density lipoprotein cholesterol (LDL-C) is defined
based on LDL (Grundy et al. 2004; Kathiresan et al.
2008; Loos et al. 2008; Willer et al. 2008; Teslovich et al.
2010). LG-based models above are unable to capture the
threshold effect, whereas the set-valued (SV) model is an
approach to capturing such effect in the modeling process
(Kang et al. 2014). The SV model is to model the relation-
ship between independent variables and a set-valued de-
pendent variable that can be generated by a quantization
process of the corresponding continuous latent or un-
known variable. And the SV model has been employed in
genetic association studies for the identification of genetic
markers for binary or ordered categorical primary traits,
and has better performance than LG-based methods (Kang
et al. 2014; Bi et al. 2015).

Here, we extend the SV approach to secondary traits
analyses, in which we use SV model to model the dichoto-
mizing process of the continuous variable for the primary
binary trait. The similar dichotomization process will also be
used tomodel the secondary binary trait. An advantage of this
method is that it canemploy twounderlying latent continuous
traits from which the binary outcomes are conceptually gen-
erated, making it more efficient and robust in estimating the
model parameters than the existing methods. We also dem-
onstrate the effectiveness of our method by extensive simu-
lation studies, andananalysis of six continuousandonebinary
secondary traits in a GWAS of benign ethnic neutropenia/
leukopenia (Nalls et al. 2008).

Methods

The general idea of ourmethod is to jointlymodel the primary
binary trait and the secondary traits by using SVmodel. This is
based on a dichotomization process of a continuous variable
for an observed binary variable that we previously developed
for the primary binary traits (Kang et al. 2014). Below, we let
D denote the case-control disease status (1 = disease/case,
0 = no disease/control), Y denote the secondary trait, and X
denote the genotype values, coded as 0, 1, or 2 based on the
number of minor alleles of a SNP.

SV model for a secondary continuous trait

We propose a novel SV model, in which the primary binary
trait (D) can be regarded as the SV observation of a contin-
uous latent variable (Dlv):
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8<
:

Y ¼ b0 þ b1X þ e;
Dlv ¼ g0 þ g1X þ g2Y þ elv;
D ¼ I½Dlv .0�;

(1)

where random variables e(elv) follow a normal distribution,
with a mean of 0 and variance s2(s2

lv), and they are indepen-
dent. I½:� is an indicator function: if Dlv .0; then the subject is
declared as a case ðD ¼ 1Þ; otherwise, it is a control ðD ¼ 0Þ:
The null hypothesis of H0: b1 ¼ 0 corresponds to no genetic
effect of the SNP on the secondary trait. Followingmodel (1),
the conditional probability density function of the secondary
trait, and the conditional probability of disease status, are

gðY jXÞ ¼ fsðY 2b0 2b1XÞ;    
PðD ¼ 1jX; YÞ ¼ Fslvðg0 þ g1X þ g2YÞ;

where fsð:Þ and Fsð:Þ are probability density function and
cumulative distribution function of normal distribution with
a mean of 0 and a variance of s2:

SV model for a secondary binary trait

We propose a novel SV model in which both the primary and
secondary binary traits canbe regardedas the SVobservations
of two continuous latent variables:

8>><
>>:

Ylv ¼ b0 þ b1X þ e;
Y ¼ I½Ylv . 0�;
Dlv ¼ g0 þ g1X þ g2Y þ elv;
D ¼ I½Dlv .0�;

(2)

where random variables e(elv) follow a normal distribution,
with a mean of 0 and variance s2(s2

lv), and they are indepen-
dent, I½:� is an indicator function: Secondary trait Y ¼ 1 or
0 depends on whether or not Ylv is .0, and disease status
D ¼ 1 or 0 depends on whether or not Dlv is .0. The null
hypothesis of H0: b1 ¼ 0 corresponds to no genetic effect of
the SNP on the secondary trait. Following model (2), condi-
tional probabilities of secondary trait and disease status are
as follows:

PðY ¼ 1jXÞ ¼ Fsðb0 þ b1XÞ;    
PðD ¼ 1jX; YÞ ¼ Fslvðg0 þ g1X þ g2YÞ:

Parameter estimate and test statistics

Suppose we observe ðDi; Yi;XiÞ; i ¼ 1; . . . ; n; where n is the
total sample size. For a case-control study, the sampling pro-
cess is conditional on the case-control status; hence, we use a
retrospective likelihood function as follows:

YN
i¼1

PðYi;XijDiÞ ¼
YN
i¼1

PðDijYi;XiÞ � PðYijXiÞ � PðXiÞ
PðDiÞ ;

where PðDiÞ ¼
P

x
P

y

�
PðDijy; xÞ � PðyjxÞ � PðxÞ

�
:

Here,weassumeHardy-Weinbergequilibrium(HWE), and
parameterize the genotype distribution with one parameter,
the minor allele frequency (MAF), instead of two parameters

P(X = 0), and P(X =1) as that in Lin and Zeng (2009) (see
Supplemental Material, File S1). We maximize this function
to estimate model parameter, denoted as cb1; and compute
the derived closed-form Fisher information matrix based on
estimated parameters. Then, we can obtain the estimated
variance of ðcb1Þ from the Fisher information matrix. Next,
the Wald statistic is constructed to test H0: b1 ¼ 0: Asymp-
totically, Wald statistic approximately follows a central x2

distribution with 1 degree of freedom under the H0. The de-
tailed implementation of the parameter estimate algorithm,
and testing inference procedure, of the SV method is in
File S1.

Simulation study

We performed extensive simulation studies to assess the
performance of the SV method against the competing alter-
natives LG-based methods of Lin and Zeng (2009), denoted
by LG, and of Ghosh et al. (2013), denoted by LGZou. For
LGZou, if its program gives an error message and stops run-
ning, then we will take NA as its output. MAF as an input
parameter in LGZou will be given by the true MAF for
simulations.

Data simulation: Given the MAF of the tested SNP p, we
first generated genotypes for a population of 50,000,000
individuals based on the genotype frequencies, PðXÞ;
calculated according to HWE, i.e., PðX ¼ 0Þ ¼ ð12pÞ2;
PðX ¼ 1Þ ¼ 2pð12 pÞ; PðX ¼ 2Þ ¼ p2:

Next, we generated traits including disease status and
secondary traits for the population. We considered two data
simulation models: SV.simu and LG.simu. SV.simuwas based
on models (1) and (2) for the secondary continuous and
binary traits. LG.simu was based on the LG-based model
proposed by Lin and Zeng (2009); that is, when the second-
ary trait was continuous, then the LG.simu model was

Y ¼ b0 þ b1X þ e;

PðD ¼ 1Þ ¼ expðg0 þ g1X þ g2YÞ
1þ expðg0 þ g1X þ g2YÞ

:

8><
>: (3)

When the secondary trait was binary, then the LG.simumodel
was

PðY ¼ 1Þ ¼ expðb0 þ b1XÞ
1þ expðb0 þ b1XÞ

;

PðD ¼ 1Þ ¼ expðg0 þ g1X þ g2YÞ
1þ expðg0 þ g1X þ g2YÞ

:

8>>><
>>>:

(4)

In both SV.simu and LG.simu, b0 ¼ 1 and standard devia-
tion (SD) of e of 1 were used to simulate the secondary
continuous trait, which is the same as that used by Lin
and Zeng (2009). For the secondary binary trait, we se-
lected b0 ¼ 2 1:28ð22:2Þ in LG.simu (SV.simu) so that
PðY ¼ 1jX ¼ 0Þ � 0:1:

To simplify our notations, we use OR.D.X to characterize
correlation between disease and genotype, and OR.D.Y to
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characterize correlation between disease and secondary
traits. They both are the conditional odds ratios. Their
definitions and the one-to-one mapping functions to de-
scribe relationships between themand their corresponding
parameters (g1 and g2) in models (3) and (4) can be found
in File S2. Hence, given OR.D.X and OR.D.Y, their corre-
sponding parameters g1 and g2 can be calculated based
on their one-to-one mapping functions to simulate the
traits data.

After the genotype and traits data were simulated for the
population, n/2 cases and n/2 controls were randomly se-
lected as the sample data for the further secondary trait as-
sociation analysis.

Type I error simulations: Three values for MAFs of SNPs
were considered:0.005, 0.05, and0.3. First,wefixedbothOR.
D.X and OR.D.Y at 1.2, and varied the prevalence of disease
from common at 10%, to rare at 53 1025; when the second-
ary trait was continuous, the total numbers of cases and con-
trols were n = 2000 and n = 4000 for CVs with
MAF $ 0.05, and for RVs with MAF = 0.005, respectively.
When the secondary trait was binary, the total numbers of
cases and controls were n = 4000 and n = 8000 for CVs
with MAF $ 0.05 and for RVs with MAF = 0.005, respec-
tively. Data were simulated only by LG.simu, since this is
enough to show the robustness of the SV method as well as
the unstable algorithms implemented in LG and LGZou. Sec-
ond, given a disease prevalence of 0.01 andOR.D.X= 1.2, we
considered OR.D.Y of 1, 1.2, and 1.5, respectively, represent-
ing no correlation, small correlation, and large correlation
between disease status D and the secondary trait Y, respec-
tively. The same sample sizes were used as above.

We considered liberal significance levels a = 0.05, 0.01,
and 0.001, and stringent significance level a = 5 3 1024,
1024, and 1025 under H0 : b1 ¼ 0: 5,000,000 replicated
datasets were simulated, and the type I error rate was esti-
mated to be the proportion of replicates with P-values ,a.
For ease of readability, we reported the ratio of empirical
estimate of type I error â over the expected level of signifi-
cance, i.e., R ¼ â=a; for all Tables and Figures reporting type
I error results, so that, for a well-controlled test, the ratio
should be close to 1.

Power simulations

Extensive simulations were designed to test the power of the
three methods. We considered the same parameter settings
described in the simulation section for type I error rate, in-
cluding MAFs, OR.D.X, and the prevalence. We first fixed b1
at 0.2, 0.5, and 1, and varied the disease prevalence same as
above. The other parameters were the same as those for type
I error estimation above. Then, given a disease prevalence of
0.01, we considered three situations as (1) we first fixed the
same setting of sample size, and increased parameter b1 from
0.1 to 2 at an increment of 0.1; (2) we fixed b1 = 1 and
increased the sample size; (3) we fixed the sample size and
b1 but varied the correlations between two traits (OR.D.Y).

Data sets were generated 10,000 times for each configura-
tion, and power was estimated to be the proportion of repli-
cates with P-values ,a = 1025.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

Simulation results: effect of prevalence of diseases

As many GWAS or NGS have been conducted/conducting for
both common and rare diseases, it would be of great practical
interests to first evaluate the relative performance of the
proposed SV method to detect CVs and RVs given different
prevalence of diseases, compared to two LG-based methods.

Empirical type I error rate: Figure 1 and Table S1 display
the empirical type I errors for three methods given OR.D.
X = OR.D.Y = 1.2. Remarkably, SV method robustly and
consistently controls type I error rate at any given simulated
significance levels to identify both CVs and RVs for binary as
well as continuous secondary traits, regardless of whether
the disease is as common as 10%, or as rare as 5 3 1025.
The average values and SD of R at all given significance levels
are 0.956 and 0.118, the median is 0.999, and the range is
from 0.653 to 1.321.

By contrast, the prevalence of disease has a significant
effect on the performance of both LG and LGZou, especially
for identifying RVs at a more stringent significant level. Given
a common primary disease with a prevalence of 1% or higher,
the more stringent the significance level, the larger the esti-
mated type I error. For example, to identify a SNP with
MAF = 0.005 associated with a secondary continuous trait
given a disease prevalence of 1%, the type I error rate of LG
could be eight times higher than the given level of 0.01, or
5548 times higher than the given level of 1025 due to its
unstable estimates of parameters and its variances (Table 2
and Table S2, also see Variance of the genetic association pa-
rameter estimate). LGZou performs better than LG, but still
cannot control type I error at stringent significance levels.
For identifying CVs, LGZou controls type I error rate well
for both binary and continuous secondary traits, but LG con-
trolled type I error for identifying a SNPwithMAF of 0.3 only
when secondary trait is binary (Figure 1, A and B). If the
disease is as rare as #0.5%, the type I error rates of both
methods are generally controlled well, but not controlled
for RVs with MAF of 0.005 when secondary trait is binary,
especially LGZou. For example, to identify a RV with
MAF = 0.005 associated with a secondary binary trait, the
type I error rate of LGZou could be 239 times higher than the
given level of 1025 due to its unstable estimates of parame-
ters and its variances (Table 2 and Table S2, also see Variance
of the genetic association parameter estimate).
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Empirical power: Strikingly, a similar conclusion holds for
power estimation (Figure 1, C and D); that is, there is no
obvious effect of the disease prevalence on the power of the
SV method because of its quite stable estimates of the param-
eters and its variance (Table 2 and Table S2, also see section
Variance of the genetic association parameter estimate).

In contrast, the power of both LG and LGZou will be signif-
icantly affected by the disease prevalence, and is smaller
than, or identical to, that of the SV method, especially for
identifying a SNP with MAF = 0.05, and a RV with MAF =
0.005 if the disease prevalence is.0.5%. However, we need

interpret their power with caution since their type I error
rates cannot be controlled in these situations. If the disease
is as rare as #0.5%, the power of both methods to identify
SNPs associated with secondary continuous traits were inter-
pretable, since their type I error rates are controlled, and
were smaller than, or identical to, that of SV method; that
is, the SV method has highest power followed by LG and
LGZou (Figure 1D). Due to the similar performance of LG
and LGZou above, in Figure 2, Figure 3, Figure 4, Figure S1,
Figure S2, Figure S3, Figure S4, Figure S5, Figure S6, Table 1,
Table 2, Table S3, Table S4, and Table S5 below, only results
corresponding to LG are included. The following sections
show results given prevalence of disease of 0.01.

Effect of correlations between two traits

The empirical type I error rate: Table 1 and Table S3 show
the empirical type I error rates of the SV and LG methods.
The SV method consistently controls type I error rate well at
any given significance levels for both CVs and RVs, regardless
of whether the secondary trait is continuous or binary,
whether the primary and secondary traits are correlated or
not, and which simulation model was used to simulate the
trait data. As expected, at a liberal significance level of
a = 0.05 or 0.01, the LG method correctly maintains type I
error control for both CVs and RVs, regardless of which sim-
ulation method was used when the secondary trait is binary.
Interestingly, when the secondary trait is continuous, the LG
method could maintain the type I error at level of 0.05 and
0.01 when MAF is 0.3, but could not when MAF #0.05 be-
cause of its small estimate of the variance of the estimated
parameter (Table 2, also see Variance of the genetic associa-
tion parameter estimate). At stringent significance levels of
a = 1024 or 1025, the LG method could not control the
type I error rate in many of the simulated situations, except
when the variant is common (MAF = 0.3), and the second-
ary trait is binary. In addition, as decrease in MAF of the
tested SNP, the estimated type I error rate of the LG method
increases sharply.

Figure 1 The ratio ðR ¼ â=aÞ and empirical power for LG, LGZou, and SV methods. (A) and (B) shows the type I error rates results of three methods for
secondary binary and continuous traits, respectively. (C) and (D) shows the empirical power results of three methods for secondary binary and
continuous traits, respectively. OR.D.X = OR.D.Y = 1.2 and b1 = 0.5 for power estimations. The data were generated with LG.simu. The solid and
dotted lines correspond to a = 0.01 and 1025, respectively. The solid black line is for R = 1. If R $ 4, then we set it to be 4. The blue, red, and dark
green lines correspond to LG, LGZou, and SV methods, respectively. The power was estimated at a level of 1025. When secondary trait is continuous, the
sample size of either case or control is n/2 = 1000 (n/2 = 2000) for CVs (RVs); when the secondary trait is binary, the sample size of either case or
control is n/2 = 2000 (n/2 = 4000) for CVs (RVs).
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Empirical power: Figure 2 shows the empirical power of two
methods as a function of effect size (b1) at a significance level
a = 1025 for an additive genetic model. As expected, the
power of both methods generally increases with increase in
effect size, regardless of the type of secondary trait, simula-
tion model or MAFs. When the secondary trait is binary, the
SV method has similar power to the LG method for CVs, but
has slightly less power for RVs (Figure 2, A and C). This result
is consistent with the simulation results of type I error rate, in
which the LG method could not control the type I error rate
for RVs at a significance level of 1025. When the secondary
trait is continuous, if the effect size is very small, then the LG
method has slightly greater power than the SV method, but
both have power ,0.1. However, as increase in effect size,
the power of the SV method sharply increases to 1 with

b1 = 0.5 for detecting a SNP with a MAF of 0.05, and 0.99
with b1 = 1 for detecting a SNP with a MAF of 0.005. How-
ever, the power of the LG method gradually increases with
corresponding power estimates of 0.84 and 0.43 when the
data are simulated by using LG.simu, although the LG
method does not correctly control type I error rate at a sig-
nificance level of 1025. These facts mean that the respective
probabilities of identifying the two variants with their respec-
tive MAFs of 0.05 and 0.005 by using the SV method are,
respectively, 1.25 times, andmore than twice, compared with
those of using the LG method. The SV method does maintain
a correct type I error rate, but the LG method does not (Fig-
ure 2B). As MAF of the tested SNP decreases, the power
difference between both methods increases. Furthermore,
some interesting cases happen for secondary continuous

Figure 2 Power of the SV and LG methods as a function of effect size b1 under an additive genetic model. (A) and (B) show results of a binary and
continuous secondary trait with the LG simulation model. (C) and (D) show results of a binary and continuous secondary trait with the SV-based
simulation model. Sample sizes in all cases are consistent with those used for simulations to estimate the type I error rates. The solid and dotted lines
correspond to the LG and SV methods, respectively. The numbers 1–3 correspond to the tested SNPs with MAFs of 0.3, 0.05, and 0.005, respectively.
OR.D.X = OR.D.Y = 1.2, and prevalence is 0.01. When secondary trait is continuous, the sample size of either case or control is n/2 = 1000
(n/2 = 2000) for CVs (RVs); when the secondary trait is binary, the sample size of either case or control is n/2 = 2000 (n/2 = 4000) for CVs (RVs).

1054 G. Kang et al.



trait, where the power of the LG method suddenly decreases
and then increases as increase in b1 when MAF is 0.05 and
0.3. We closely examined the results, and found �20% of
simulations in which the LG method wrongly estimated pa-
rameter b1 as being close to 0, decreasing its statistical power
(Figure S1). The conclusion is the same when the data are
simulated by using SV.simu (Figure 2D).

Figure 3 shows the power of two methods as a function of
sample size at a significance level a = 1025 for an additive
genetic model. Here, we fixed effect size b1 ¼ 1: Regardless
of CVs or RVs, data simulation methods and the type of sec-
ondary traits, the power of the SV method increases with
increase in sample size unless its power is already 1. When
the secondary trait is binary, the power of the LGmethod also
increases regardless of the type of variants and data simula-
tion methods: it is almost identical to and slightly greater

than that of the SV method when a tested SNP had a
MAF$0.05 or 0.005, respectively. However, the LGmethod’s
type I error could not be controlled when a tested SNP had a
MAF of 0.005.

When a secondary trait is continuous, the power of the SV
method CV was nearly one under any simulated sample size
for CVs, and increased rapidly with increase in sample size for
RVs. But the power of the LG method increased slowly. For
example, the power of the SV method increases from 0.12 to
0.95 when the total sample size increases from n = 800 to
n = 3200, but that of the LG method increases only from
0.10 to 0.41. These facts mean that, with the supplement of
1200 cases and 1200 controls, SV method can absolutely
identify this rare variant with aMAF of 0.005 at a significance
level of 1025 when b1 ¼ 1; but the probability of identifying
this variant by using the LGmethod is only 0.38. Additionally,

Figure 3 Powers of the SV and LG methods as a function of sample size under an additive genetic model. (A) and (B) show results of a binary and
continuous secondary trait with the LG simulation model. (C) and (D) show results of a binary and continuous secondary trait with the SV-based
simulation model. The sample size on the x-axis is the number of individuals in either cases or controls. The solid and dotted lines correspond to the LG
and SV methods, respectively. The numbers 1–3 correspond to the tested SNPs with MAFs of 0.3, 0.05, and 0.005, respectively. OR.D.X = OR.D.
Y = 1.2, prevalence is 0.01, and effect size b1is fixed at 1.
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to investigate whether the failure shown in Figure 2 is related
to sample size, we used LG.simu to simulate one study with
an extremely large sample size of total n = 20,000 subjects.
With a significance level of 1025, the power of the LGmethod
was still 0.88 for MAF = 0.3, and 0.41 for MAF = 0.05,
respectively. And the power of the SV method was one, re-
gardless of rare or CVs. Increasing sample size did not in-
crease power of the LG method, indicating that, under
specific parameter settings, the likelihood function of the
LG method may have a local maximum point.

Figure 4 and Figure S4 display the power of both methods
as a function of the correlations between two traits when OR.
D.X = 1.2 or OR.D.X = 0.8. For the secondary continuous
trait, if the tested SNP is CVwith aMAF of 0.3, then the power
of both methods is close to 1 and remains similar regardless
of the correlations between two traits or the sign of the effect
sizes (i.e., genetic variant is risk or protective for the second-
ary binary trait). Interestingly, as decrease in MAF of the
tested SNP, the power of the SV method to identify a risk
(protective) allele for the secondary trait increases (de-
creases) as the actual value of correlation between two traits
increases due to its decreasing (increasing) cSEðcb1Þ; regard-
less of the trait simulation methods (Table S5). In detail, as
correlation increases, the numbers of patients with heterozygous

and homozygous of minor allele increase and decrease
when the genetic variant is risk and protective allele for the
secondary trait, respectively, which leads to the smaller and
larger cSEðcb1Þ; althoughcb1 is stable. By contrast, the power of
the LG method is not a clear function of correlations because
of its instable estimate of parameter (cb1) and variance
[cSEðcb1Þ] (Table S5). The power changes can be very large.
For example, as OR.D.Y increases from 0.5, to 1.5, to 1.75,
the power of the LG method to identify a protective allele
with a MAF of 0.005 are 0.88, to 0.15, to 0.56 (Figure 4H).

For the secondary binary trait, it is obvious, as increase in
the actual values of correlations between two traits, the power
of both methods increases regardless of CVs or RVs, trait
simulation models, and the sign of the effect sizes (i.e., ge-
netic variant is risk or protective for the secondary binary
trait) (Figure 4, A, C, E, and G). In detail, as the actual cor-
relation values between two binary traits increase, the distri-
bution of secondary binary trait conditional on the fixed
primary trait becomes more balanced, so that cSEðcb1Þ
becomes smaller, though cb1 stays very similar, which leads
to greater power of bothmethods (Table S5, see also Variance
of the genetic association parameter estimate below). The in-
crease in power can be very large when the increase in the
actual value of the correlation is very large. For example, as

Figure 4 Powers of the SV and LG methods as a function of correlations between two traits under an additive genetic model. (A)/(E) and (B)/(F) show
results of a binary and continuous secondary trait with the LG simulation model. (C)/(G) and (D)/(H) show results of a binary and continuous secondary
trait with the SV-based simulation model. The solid and dotted lines correspond to the LG and SV methods, respectively. The numbers 1–3 correspond to
the tested SNPs with MAFs of 0.3, 0.05, and 0.005, respectively. The prevalence is 0.01, and OR.D.X = 1.2. The effect sizes b1 are fixed at 1, 0.4 and
0.25 for (A)–(D) and at21,20.4, and20.25 for (E)–(H) for the tested SNPs with MAFs of 0.005, 0.05, and 0.3, respectively. When the secondary trait is
continuous, the sample size of either case or control is n/2 = 1000 (n/2 = 2000) for CVs (RVs); when the secondary trait is binary, the sample size of
either case or control is n/2 = 2000 (n/2 = 4000) for CVs (RVs).
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OR.D.Y increases from 0.5 to 1.75, the power of the SV
method to identify a protective allele with MAF 0.05 at a
significance level of 1025 increases from 0.01 to 0.67 (Figure
4G), and that to identify a protective allele withMAF 0.005 at
a significance level of 0.01 increases from 0 to 0.99 (Figure
S3C). The conclusions of the power as a function of correla-
tions between two traits when the OR.D.X = 0.8 are similar
(Figure S4).

All the conclusions above hold for dominant and recessive
genetic disease models (Figure S5 and Figure S6).

Variance of the genetic association parameter estimate

Effect of the prevalence of disease: No matter the disease is
as commonasaprevalenceof10%,oras rareasaprevalenceof
5 3 1024, if OR.D.Y = 1.2, the estimate of the genetic as-
sociation parameter by the SV method was robust, and very
close to the true parameters if the trait is continuous, and was
nearly a fixed times smaller than the true parameters if the
trait is binary; the SD of the estimate parameter [SDðcb1Þ] was

very close to themean of the estimated standard error cSEðcb1Þ
if the data were simulated by LG.simu. This leads to the pro-
found and remarkable properties of the SV method in terms
of controlled type I error rate and improved power compared
to the LG and LGZou methods (Table S2).

Similarly, if the disease is rare, such as a prevalence
varying from 0.005 to 5 3 1024, to identify SNPs associ-
ated with a continuous secondary trait, the conclusions for
LG and LGZou methods were similar to that of SV, but LGZou

had a greater SDðcb1Þ than SV and LG, which led to the
conservative properties of LGZou, regardless of whether
the SNP is associated with secondary trait or not (Figure
1B and Table S2). In sharp contrast, to identify SNPs asso-
ciated with a binary secondary trait, LGZou had a bias esti-
mate of the parameter, and smaller estimate of the variance

of parameter estimate, for a SNP with MAF of 0.005, which
leads to the uncontrolled type I error rate for rare SNPs
(Figure 1A and Table S2).

By remarkable contrast, if the disease is common, such as a
prevalence varying from 1 to 10%, to identify common or rare
SNPs associated with a continuous secondary trait, LG had
smaller estimate of the variance of the parameter estimate

[SDðcb1Þ . cSEðcb1Þ] so that its type I error rate could not be
controlled at stringent significant levels, but its power was
comparable to that of SV method (Figure 1B and Table S2).
However, LGZou performed better than LG for common and
rare SNPs, but still had an inflated type I error for rare
SNPs in some situations. Furthermore, to identify SNPs
associated with secondary binary traits, both methods per-
formed similarly, that is, for rare SNPs, they both had
smaller estimate of the variance of the parameter estimate,
which leads to uncontrolled type I error rates (Figure 1A
and Table S2).

Effect of correlations between two traits: Given a disease
prevalence of 0.01, Table 2 gives a mean of cb1; a mean of the

estimated SEs of cb1 [denoted as cSEðcb1Þ], and SD of cb1

[denoted as SDðcb1Þ] for the LG and SV methods based on
10,000 simulation repetitions under the null hypothesis

b1 ¼ 0: As expected, as MAF decreased, both cSEðcb1Þ and

SDðcb1Þ increased for both LG and SV methods. And cSEðcb1Þ
appeared to be close to SDðcb1Þ for the SV method in all
simulation setups, leading to its correct control of the type I
error rate (Table 2). However, the SD of estimated parameter

[SDðcb1Þ] for the LG method was obviously larger than the

mean of the estimated standard error cSEðcb1Þ; especially for
RVs and secondary continuous traits, leading to its severely

Table 1 A comparison of the ratios (R = â=a) for the SV and LG methods

Simulation Model MAF

a = 0.01 a = 1e25

OR.D.Y = 1 OR.D.Y = 1.2 OR.D.Y = 1.5 OR.D.Y = 1 OR.D.Y = 1.2 OR.D.Y = 1.5

SV LG SV LG SV LG SV LG SV LG SV LG

Continuous
LG.simu 0.3 1.00 1.22 1.02 1.18 1.11 1.13 1.12 139.0 1.20 132.76 1.32 81.33

0.05 1.00 3.28 1.02 2.75 1.06 2.99 1.12 1604.2 1.26 1267.04 1.02 1429.1
0.005 1.00 7.25 1.01 8.13 1.03 9.27 1.29 4977.1 1.02 5591.08 1.13 6486.1

SV.simu 0.3 1.00 1.26 1.00 1.40 1.01 1.53 1.10 157.96 1.14 225.99 1.20 63.92
0.05 1.01 3.25 1.00 2.75 1.01 3.66 1.00 1573.3 1.30 1342.06 0.88 1978.9
0.005 1.00 7.49 1.00 7.34 1.00 8.83 0.91 5158.2 0.89 5015.27 0.98 6150.4

Binary
LG.simu 0.3 1.00 0.99 1.00 0.99 1.01 0.98 0.94 1.02 0.82 0.88 1.02 0.82

0.05 0.95 0.95 0.98 0.97 0.98 0.96 0.70 12.75 1.02 9.23 0.74 6.53
0.005 0.65 1.11 0.71 1.08 0.78 1.08 0.82 327.1 1.00 316.26 0.90 311.3

SV.simu 0.3 0.99 0.98 0.99 1.00 0.99 1.13 1.06 0.92 0.88 0.86 0.82 1.08
0.05 0.96 0.95 0.96 0.92 0.97 0.92 0.92 1.68 0.80 1.34 0.84 0.98
0.005 0.70 0.94 0.76 0.86 0.82 0.87 0.88 156.8 0.58 144.01 0.58 150.1

b1 ¼ 0; OR.D.X was fixed at 1.2; prevalence was fixed at 0.01; when the secondary trait was continuous, b0 = 1, and the sample size of either case or control is 1000 (2000)
for CVs (RVs); when the secondary trait is binary, then b0 = 22.2 (21.28), if the simulation model is the LG-based (SV) model, and sample size of either case or control is
2000 (4000) for CVs (RVs). Bold type indicates that the type I error rate could not be controlled.
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inflated type I error especially at stringent significance level.

Additionally, the mean ofcb1 by the SVmethod is much closer
to the true value b1 ¼ 0; compared with that by the LG
method. For example, when the secondary trait was contin-
uous, and LG.simu was employed to simulate RVs (MAF =
0.005), the SV method gave almost the same value of 0.153

for both cSEðcb1Þ and SDðcb1Þ; while the LG method gave

cSEðcb1Þ of 0.475 and SDðcb1Þ of 1.436. The mean of cb1 by
the SV method was 0.001, which is ,,0.046 by the LG
method. The conclusions are also validated in (A)–(C) of

Figure S1 and Figure S2, the scatter plot for both cb1 andcSEðcb1Þ:
We also recorded summary results for parameter esti-

mations under the alternative hypothesis in Table S4.
Similar to those for the null hypothesis, the SV method’s
estimate of the parameter, and its estimated variance un-
der the alternative hypothesis, were very stable. The
mean of the estimated parameter was close to the true

value, and the SD of the estimated parameter [SDðcb1Þ]
was very close to the mean of the estimated SEs of the

estimated parameter cSEðcb1Þ) regardless of the type of
variants (common or rare variant) and trait simulation
method, showing that the power of the SV method stay
stable and optimal.

By contrast, under the LG method’s own trait simulation
model, the mean of the estimate of parameter by the LG
method for the CVs with MAFs of 0.3 was close to the true
value for both secondary binary and continuous traits, except
b1 = 1. Similarly, the SD of the estimated parameter
[SDðcb1Þ] was close to the mean of the estimated SEs of the

estimated parameter cSEðcb1Þ: Both findings demonstrate that
the power of the LG method for CVs will be comparable to
that of the SVmethod. However, the power of the LGmethod
at a stringent significance level should be interpreted with
caution because of the method’s inflated type I error rate.
Interestingly, when the secondary trait was continuous, MAF

was 0.3, and true b1 = 1, the mean value of cb1 by LG
method was 0.851 (,,1), which indicates a number of in-
accurate smaller estimates of parameter b1: (D1) in Figure
S1 shows that, in this particular parameter setup, there were

a lot of repetitions whosecb1 close to 0, further explaining the
decrease of power in Figure 2B. As theMAF of the tested SNP

decreased, its mean of the estimate of parameter ( jcb1 j ) was
much smaller than the true value, especially for secondary
continuous traits, and the SD of the estimated parameter

[SDðcb1Þ] was larger than the mean of the estimated SEs of

the estimated parameter cSEðcb1Þ). This situation leads to the
method’s power being less than that of the SV method. For
example, when the trait is simulated by using LG.simu, with
b1 = 0.8, a MAF of 0.005, and 1000 cases and 1000 controls,
then the respective estimate of b1 by the SV and LG methods
were 0.804 and 0.371, for a continuous trait, with theirTa
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SDðcb1Þ of 0.148 and 1.372, which clearly shows the profound
power advantage of the SV method compared to the LG
method. Additionally, for the secondary binary trait, we
found that the LG and SV methods estimated parameters
more accurately when data were simulated with a model of
its own, and that the ratio of parameter estimation was sim-
ilar to that of the primary binary trait analysis by logistic and
probit regression.

Interestingly, for secondary continuous traits, regardless of
the trait simulation models, as the correlations between two
traits increase, theestimateof theparameterby theSVmethod
to identify a risk (protective) genetic variant remains very

stable, but SDðcb1Þ and cSEðcb1Þ decrease (increase), because
the number of individuals with heterozygous and/or homo-
zygous genotypes of the risk allele increase (decrease), espe-
cially for the RVs (Table S5), which proved the power
increase (decrease) as increase in correlations between two
traits (Figure 4, B, D, F, and H). For the LGmethod, the trend
of the power as a function of the correlations is not very clear
because of its unstable estimate of the parameter, and its
estimated SE. In contrast, for secondary binary traits, as the
actual value of the correlations between two trait increases,
the estimate of the parameter by both methods remains very

stable, but SDðcb1Þ and cSEðcb1Þ decrease, regardless of
whether the genetic variant is a risk or protective factor, in
that the number of individuals with D = 1 and Y = 1 in-

creases, so that cSEðcb1Þ decreases, leading to the increasing
power of both methods.

Application to a GWAS of benign ethnic neutropenia

Benign ethnic neutropenia (BEN) is a clinical condition
more commonly observed in African-Americans, with a
prevalence of �4.4% (Hsieh et al. 2007). The NHLBI and
National Institute of Diabetes and Digestive and Kidney
Disease conducted a study to identify genetic determinants
of BEN. The study used DNA samples and phenotypes
available from The REasons for Geographic and Racial Dif-
ferences in Stroke study. Subjects with leukocyte counts in
the lowest 1–7th percentile were considered as cases, and
subjects with leukocyte counts in the highest 85th–95th
percentile were considered as controls. After removing
10 patients without genotype data, we analyzed 984 genet-
ically independent subjects (489 cases and 495 controls)
with the genotype of 677,755 SNPs (dbGaP Study Acces-
sion: phg000307.v1) provided by the BEN study that
passed preimputation filters (IMPUTE2 SNP types 2 and
3). Quality control of the genotypic and phenotypic data
was performed by the study team of this study. We further
removed SNPs whose MAFs were ,0.005, to enable us to
investigate the RV associations. In our analysis, we dealt
with leukocyte counts case-control status as the primary
binary trait, and analyzed seven secondary traits, includ-
ing one binary trait of stroke, and six continuous traits of
the total cholesterol (TC), HDL, LDL, platelet count (PC),

triglycerides, and C-reactive protein (CRP), using the three
methods above. Depending on the normality of the data,
either a two-sample t-test or a Mann-Whitney-Wilcoxon test
was used to test for correlations between the primary
and secondary traits. HDL (Pcor = 7.2 3 10210), PC
(Pcor = 3.6 3 10226), triglycerides (Pcor = 1.5 3 10224),
and CRP (Pcor = 3.0 3 10232) were significantly correlated
with the continuous white blood cell count, and the binary
case-control status (Figure S7). The distribution of age and gen-
der in cases and controls were comparable. Before analysis, we
followed the same normalization process as He et al. (2012), and
standardized each continuous trait by subtracting its mean esti-
mated from controls, and then dividing by its SD estimated by
using all samples.

Table 3 summarizes the number of SNPs with no P-value
outputs, P-value of 0, or P-value ,1027 or 1025 for each
secondary trait. For the six continuous traits, the number of
SNPs identified by the LG method was much larger than that
identified by the SV method with LGZou in-between. Because
of too many extremely small P-values, the QQ-plot of the LG
method deviated clearly from the expected line, with respec-
tive genomic inflation factors (computed by function
estlambda in R package GenABEL with default arguments;
102100 are used to appropriate P values of 0 in case of the
errors of the regression algorithm) of 1.80, 4.91, 2.32, 1.73,
1.80, and 2.15 for TC, HDL, LDL, PC, triglycerides, and CRP,
respectively (Figure S8). By sharp contrast, the SV method is
more stable when analyzing these six secondary continuous
traits, yielding a QQ-plot very close to the diagonal line, with
corresponding genomic inflation factors of 0.97, 1.05, 0.97,
0.93, 0.94, and 0.92 (Figure S8). Similarly, LGZou has geno-
mic inflation factors greater than, but close to, 1 (1.16, 1,
1.16, 1.27, and 1.52 for TC, HDL, LDL, PC, and triglycerides,
respectively), except 2.65 for analyzing CRP. All six geno-
mic inflation factors are much .1 by the LG method, and
very close to 1 by the SV method (Figure S8), showing that
there is no population stratification problem in this data.
Therefore, they indicate that the LG method might have
generated too many false positive results based on our sim-
ulation results above for common diseases (please also see
below for justification). Additionally, the number of SNPs
without a P-value generated by the LG method is also much
larger than that generated by the SV and LGZou methods.
For instance, when analyzing the secondary trait of platelet
count, there are 147,358 SNPs with no P-value output by the
LGmethod, which is 10,526 and 5,668 times more than that
found by the SV and LGZou methods, respectively. Further-
more, SV did not generate any SNP with a P-value of 0 for
seven traits, and LGZou generated 13 SNPs with a P-value of
0 when analyzing CRP; in striking comparison, LG gener-
ated hundreds of SNPs with a P-value of 0. We would def-
initely suggest that the LG method not be used for mapping
RVs when the secondary trait is continuous. For the binary
trait of stroke, the three methods perform similarly. Their
genomic inflation factors are 0.978, 0.970, and 1.12 for
the LG, LGZou, and SV methods, respectively. Under a
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significance level of 1025, SV, LG, and LGZou identified 5, 7,
and 23 SNPs with P-value ,1025, but no single SNP was
identified by all of these three methods. Of the five SNP
identified by SV, two, with MAFs of 0.35 and 0.06, were
also identified by LG, and the P-values of the other three
identified by LG are slightly higher than those identified by
SV. One P-value by LGZou was NA, and P-values of the other
four were close to 1024 (Table S6).

At a significance level of 1027, the SV method identified
three SNPs (rs856046, rs12100053, and rs11466310) asso-
ciated with CRP, and one SNP (rs7412) associated with LDL.
All four SNPs were also identified by the LG and LGZou

method, which means that 100% of SNPs identified by SV
can be replicated by LG and LGZou. Similarly, LG and LGZou

identified, in total, 5225 and 1536 SNPs for seven traits, but
only 0.08 and 0.03% were replicated by three methods. Even
for both LG-based methods, among 5225 and 1536 SNPs
identified by LG and LGZou, 0.25 and 0.8% were replicated
by LGZou and LG, respectively. For four SNPs identified by the
three methods at a level of 1027 above, SNP rs7412 is a non-
synonymous SNP in APOE exon 4, whose corresponding pro-
tein is the principle cholesterol carrier in the brain, and the
corresponding associationwith LDL has beenwidely reported
(Thompson et al. 2005; Liu et al. 2013). SNP rs856046,
whose association with CRP has been reported by Reiner
et al. (2012), is located in gene IFI16. SNPs rs11466310
and rs12100053 are intron variants locating in genes B9D2
and TRIM13, respectively. However, no associations between
these two genes and CRP have been reported in the litera-
ture, and thus they need further validation in another inde-
pendent study.

Similarly, at a significance level of 1025, the SV method
identified, in total, 78 SNPs associated with seven secondary
traits, among which 44% (34) were replicated by both LG
and LGZou methods. However, LG and LGZou identified, in
total, 6706 and 5742 SNPs with P-values ,1025, among
which 0.5 and 0.6% were replicated by SV and LGZou, and
SV and LG, respectively. In addition, for the two LG-based
methods, among 6706 SNPs identified by LG, and 5742 SNPs
identified by LGZou, only 1.4 and 1.6% were replicated by the
other LG-based method (Table 3 and detailed information in
Table S6). These data indicate that LG-based methods gen-
erated more nonreplicable or nonreproducible results, and
are sufficient to show that our SV method is a more robust,
efficient, and reliable statistical method compared to the
LG-based methods of LG and LGZou.

In addition, we also found that the assignment of different
prevalence changes the results of the LG and LGZou methods
greatly, but does not affect the SV method (data not shown),
which is quite consistent with the simulation results above.
The stronger the correlations between the primary and sec-
ondary traits, the more SNPs without a P-value, or with
P-value of 0, are generated by the LG-based methods. How-
ever, there is no similar trend for the SV method. Certainly,
some of the secondary trait association analyses results above
may be affected by some confounding factors, such as gender,Ta
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but our focus in this study is to conduct secondary trait asso-
ciation analysis without considering the covariates.

Discussion

We have proposed a novel statistical SV approach to identify
CVs and RVs associated with secondary binary or continuous
traits inacase-control studydesign.Thismethod ismuchmore
reliable, robust, and efficient than the LG-based methods for
many critical factors, including the MAF of markers (RVs or
CVs), different link functions, prevalence of the primary
disease (common or rare diseases), correlations between
primary and secondary traits, type of secondary traits, type
of associations between genetic variants and the secondary
trait (risk or protective), and type of associations between
genetic variants and primary trait (risk or protective). This
method also has greater power in different genetic disease
models while maintaining the type I error rate than do the
LG-based methods, especially for evaluating the secondary
continuous trait and RVs. Of the markers identified by
the SV method at significance levels of 1027 and 1025,
100% and �50% can be reproducible by the other
LG-based methods. In remarkable contrast, ,1% of
markers identified by LG-based methods can be repro-
duced by the SV method, and ,1% of markers identified
by one LG-based method can be reproduced by the other
LG-based method. Because of its striking and profound
advantages, we strongly recommend the proposed new
SV method be employed instead of the LG-based methods
for secondary binary and continuous traits analyses in
case-control sequencing studies.

Wehave focusedon secondarybinaryandcontinuous traits
for case-control studies. In some studies such as NHLBI ESP,
the early-onset myocardial infarction case-control study (Do
et al. 2015), investigators can be interested in the secondary
traits of ordered categorical traits, such as categorized BMI
(under-normal, normal, overweight, and obesity), and that of
longitudinal traits, such as diastolic and systolic blood pres-
sure, and LDL.We are extending our SVmethod to such traits
in a case-control study. An ordered categorical trait can be
analyzed as a binary trait, but doing so significantly affects
the statistical power (Bi et al. 2015). Furthermore, in the
current SV method, we do not adjust for some confounding
covariates, such as genetic ancestry scores, which are com-
monly adjusted for in genetic association studies. Similarly,
we also do not adjust for interactions between secondary
traits and genetic marker on primary disease risk (Ghosh
et al. 2013). We are extending our SV method to incorporate
covariates, and/or interactions between genetic marker and
secondary traits on the primary disease risk, into the model.
As noted, this paper only models SNP-trait associations; how-
ever, the model can be easily extended to any biologically
meaningful mutants, such as multi-allelic locus, copy number
variants, and haplotype.

Besides the case-control study design, there are some other
trait-dependent samplingdesigns, such as extremephenotype

sampling of a continuous primary trait, that are commonly
used in NHLBI ESP, in which individuals with values of a
continuous trait larger than a threshold c1, and smaller
than another threshold c2, are selected for sequencing/
genotyping. For example, in the NHLBI ESP BMI study,
267 individuals with BMI . c1 = 40, and 178 individuals
with BMI , c2 = 25 were selected for sequencing out of
11,468 individuals from the Women’s Health Initiative. The
method proposed in this study can be readily applied to an-
alyze the secondary binary and continuous traits by using a
common threshold such as (c1+c2)/2; however, because do-
ing so does not account for extremes appropriately, the re-
sults might not be valid. There is one existing statistical
method available to adjust for the extreme phenotype sample
design, but the method is targeted for combining the primary
phenotype in one study, and the same secondary phenotypes
under some sampling-dependent study designs to conduct
SNP- or gene-based association tests, but it can be applied
only to secondary quantitative traits but not qualitative traits
(Lin et al. 2013). Thus, a valid uniform statistical method for
RV association test in extreme phenotype sequencing design
is urgently needed.

We have implemented the proposed new SV method in an
R package, SV2bc, which is available for free download from
http://www.stjuderesearch.org/site/depts/biostats/software.
The method can be easily applied to analyze secondary bi-
nary and continuous traits in a case-control study of candi-
date gene association analysis, GWAS, or NGS studies.
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