266 research outputs found

    TNFα induces Ca2+ influx to accelerate extrinsic apoptosis in hepatocellular carcinoma cells

    Get PDF
    BACKGROUND: Tumor necrosis factor-α has been proven an effective anticancer agent in preclinical studies. However, the translation of TNFα from research to clinic has been blocked by significant systemic toxicity and limited efficacy at maximal tolerated dose, which need urgently to be solved. METHODS: The level of cytosolic Ca RESULTS: Here, we demonstrated that TNFα induced extracellular Ca CONCLUSIONS: Our study provides the evidence supporting a novel mechanism by which TNFα induces extracellular C

    Investigations on the mechanism of microweld changes during ultrasonic wire bonding by molecular dynamics simulation

    Get PDF
    Despite the wide and long-term applications of ultrasonic (US) wire bonding and other US metal joining technologies, the mechanism of microweld changes during the bonding process, including formation, deformation and breakage, is rarely known as it is very difficult to be investigated by experiments. In this work, this mechanism under different surface topographies and displacement patterns is studied by molecular dynamics simulation. It is found that microwelds can be formed or broken instantly. Due to the relative motion between the local wire part and the local substrate part, microwelds can be largely deformed or even broken. The impacts of material, surface topography, approaching distance and vibration amplitude on the microweld changes are investigated via the quantification of the shear stress and the equivalent bonded area. It is shown that these four factors significantly influence the final connection and the interface structure. The analysis of the scale influence on the microweld changes shows that the simulation results at a small-scale are able to represent those at a large-scale which is close to the range of the commonly used surface roughness. This deeper understanding on the microweld changes leads to a better control strategy and an enhancement of the bonding process

    Nanomagnetic-Mediated Drug Delivery for The Treatment of Dental Disease

    Get PDF
    Maintaining the vitality of the dental pulp, the highly innervated and highly vascular, innermost layer of the tooth, is a critical goal of any dental procedure. Upon injury, targeting the pulp with specific therapies is challenging because it is encased in hard tissues. This project describes a method that can effectively deliver therapeutic agents to the pulp. This method relies on the use of nanoparticles that can be actively steered using magnetic forces to the pulp, traveling through naturally occurring channels in the dentin (the middle layer of the tooth). This method can reduce the inflammation of injured pulp and improve the penetration of dental adhesives into dentin. Such a delivery method would be less expensive, and both less painful and less traumatic than existing therapeutic options available for treatment of injured dental pulp. This technique would be simple and could be readily translated to clinical use

    A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis.

    Get PDF
    Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperiods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis
    corecore