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ABSTRACT: The alternately-organized poly(vinylidene fluoride) (PVDF)/ 

poly(methyl methacrylate) (PMMA) multilayer materials were prepared through 

layer-multiplying coextrusion. With the multiplication of layers, the thickness of each 

layer was reduced in proportion and the layer interfaces were enriched generating a 

broader and more continuous thermal transition temperature (Ttrans) from PVDF to 

PMMA layers as mapped by in-situ thermal analysis. The low-Ttrans side originated 

from the glass transition of PMMA, whereas the high-Ttrans side was dominated by the 

melting of PVDF crystals based on the heating curves of DMA and DSC. The 

dielectric spectroscopy and 2D-SAXS were performed and demonstrated that the 

compositional diffusion not only broadened the relaxation distribution of amorphous 
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chains, but also strengthened the interaction between amorphous and crystalline 

domains. Therefore, a unique multilayer network, where the crystals in PVDF layers 

acting as physical networks connected the neighboring amorphous layers, was 

fabricated and its potential application in obtaining multi-shape memory effect 

(MSME) was disclosed for the first time. The results exhibited that the 1024-layer 

specimen owned a better triple- and quadruple-shape memory capacity than 

conventional blend which possessed the same compositions and a similar Ttrans range. 

The latter one even failed to successively memorize more than two temporary shapes. 

A possible mechanism was proposed through polarized IR and creeping-recovery 

measurements. Higher phase continuity which benefited for the stress transfer was 

revealed to play a significant role in strengthening the shape-fixing and -recovering 

ability during each shape-memory progress. Accordingly, a new 

physically-compounding strategy was addressed to achieve outstanding MSME for 

meeting complex demands in smart applications. 

KEYWORDS: multi-shape memory effect; multilayer structure; phase continuity; 

interfacial diffusion. 
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1. INTRODUCTION 

Shape memory polymers (SMPs), as a class of stimuli-responsive materials, 

possess the ability to fix temporary deformation and sequentially recover to their 

original shape upon exposure to an external stimulus.[1, 2] Recently, increasing 

attention has been focused on developing tunable multi-shape memory polymers 

(MSMPs), which can memorize two or more temporary shapes in a preprogrammed 

cycle. This unique capability enables such materials to be applied in broader areas, 

ranging from aerospace deployable structures to smart fabrics and biomedical 

implants.[3-6] 

Typically, most of MSMPs can be designed by introducing multiphase or 

multicomponent architecture, which owns multiple well-defined thermal transitions 

(e.g. glass transition[7, 8], melting transition[9, 10] or liquid crystalline transition[11]). 

As a rule, the maximum number of shapes those can be memorized correlates to the 

number of discrete transitions. Another strategy arises from a significant finding on 

Nafion, which possesses only one broad glass transition but exhibits at least 

quadruple-shape memory effect.[12] Based on this principle, the intermediate shapes 

of a MSMP can be finely tuned without introducing more compositions, representing 

a real advantage in robustness, recyclability and reuse of MSMPs. 

To achieve multi-shape memory effect (MSME), numerous attentions are 

focused on broadening the thermal transition range by creating consecutive molecular 

relaxations through chemical grafting,[13] block copolymerization,[14] 

crosslinking,[15] and physical blending,[16] etc. For example, Luo et al. designed a 
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compositional gradient copolymer by controlling the comonomer feed composition 

during copolymerization and demonstrated that this gradient transition has exhibits 

good MSME.[14] The domains with a high thermal transition temperature (Ttrans) 

formed a physical network preventing chain relaxation, and the surrounding chains 

with a broad thermal transition held the temporary shapes and triggered shape 

recovery at different temperatures. Recently, a simple method was proposed by 

Samuel et al. A pair of miscible poly(L-lactide) (PLLA) and PMMA were physically 

blended by utilizing a traditional melt-processing technique.[16] In this blend, the 

crystals served as physical crosslinking points and a broad glass transition was 

obtained with the componential diffusion of amorphous regions, which finally yielded 

a good triple-shape memory property. However, limited by irregular phase separation 

and uncontrollable distribution of chain mobility, most blending systems are 

unfavorable for successively tuning the intermediate shapes in a wide temperature 

range due to the complex stress conditions involved in multi-shape programming. 

Also, the tortuous interfacial arrangement is detrimental to the stress transfer and 

energy conversion. Therefore, designing an optimum morphology is as important as 

broadening the glass transition, but few have been reported so far. 

As a special co-continuous morphology, the multilayer structure is assembled by 

the parallel-distributed layers which has the highest phase continuity at any 

component ratio. Our previous work has demonstrated that parallel-distributed 

components are capable of maximizing their contribution to the shape fixing and 

recovering ability in a dual shape memory progress.[17] However, to memorized 
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more temporary shapes, the previous-reported multilayered MSMPs were fabricated 

by introducing multiple well-defined thermal transitions, which means more 

components were required to achieve the multi-shape memory capacity.[10, 18] 

Actually, an intriguing aspect of the multilayer structures lies in the structural 

assembly perpendicular to the layer interfaces. As schematically illustrated in Figure 

1, the compositions represented by red and blue colors can be regarded as 

alternately-organized “blocks” with different Ttrans like that in block copolymers. By 

virtue of the interfacial diffusion effect, the gradient distribution of molecular 

mobility could be created around the layer interface and triggers the formation of a 

broad thermal transition, which has been applied to prepare damping materials with 

wide-temperature range.[19, 20] Thus, it can be reasonably supposed that such a 

particular architecture with high phase continuity and tunable thermal transition may 

possess a unique advantage in designing and preparing MSMPs. 

 

Figure 1. Schematic of the multilayer assembly of two compositions with high and 

low Ttrans represented by red and blue colors, respectively. 

 

To prove the proposition above, a multilayer material consisting of alternating 

layers of a commercial grade poly(vinylidene fluoride) (PVDF) and PMMA was 
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prepared using layer-multiplying coextrusion technology[21-25]. The PVDF/PMMA 

compounding material was previously reported to have a potential application in 

ferroelectric-field transistor device or wastewater treatment membranes,[26, 27] but 

the MSME was less concerned because both of the components were not belonging to 

classic SMPs. As a pair of compatible polymers, PVDF and PMMA have a strong 

molecular interaction.[26, 28] Therefore, the development of their Ttrans in the 

multilayer system was investigated with the multiplication of layers. To understand 

the origin of the broad Ttrans, the interaction between amorphous and crystalline 

portions and its influence on the molecular relaxation were discussed. Ultimately, the 

advantages of the specific multilayer architecture in achieving MSME was revealed 

by performing triple- and quadruple-shape memory cycles and related mechanism was 

proposed.  

 

2. EXPERIMENTAL SECTION 

2.1. Materials. PVDF (Solef 6010) with a density of 1.78 g/cm3 and a melt flow 

rate of 6.8 g/10 min (230 °C/5 kg) was produced by Solvay Solexis. PMMA (CM207) 

resin with a density of 1.19 g/cm3 and a melt flow rate of 8 g/10 min (230 °C/3.8 kg) 

was provided by Taiwan Chimei. The materials are commercially available and used 

without further purification.  

2.2. Sample Preparation. PVDF and PMMA pellets were coextruded using 

layer-multiplying coextrusion technology, the mechanism of which is described in 

Figure 2. The equipment consists of two single-screw extruders, a coextrusion block, 

several layer-multiplying elements (LMEs) and an exiting block. The PVDF and 
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PMMA were extruded from different extruders respectively, and combined as a 

2-layer melt in the coextrusion block, then flowed through a series of LMEs. In a 

LME, the melt was sliced into two left and right sections by a divider, and then 

recombined vertically leading to a doubling of the layer numbers. When n LMEs were 

applied, a sheet with 2(n+1) layers could be produced. Finally, the multilayer melt was 

extruded from an exiting block. In this work, 16-, 128-, 256-, 512- and 1024-layer 

PVDF/PMMA were fabricated by applying 3, 6, 7, 8 and 9 LMEs, respectively. It is 

noteworthy that this coextrusion technology could fabricate the material with more 

layers, but the maximum layer numbers were chosen at 1024 to guarantee the layer 

integrity during the shape-memory cycles. By controlling the coextrusion speed, the 

total thickness of each extrudate was about 1.5 mm, and the thickness ratio of PVDF 

and PMMA layers was maintained at around 2:1, irrespective of the layer numbers. 

However, the thickness of each layer would be reduced proportionally with the 

increase of layer numbers. Considering that the melt-extrusion process may induce 

some orientation in each extrudate, all extrudates were required to experience an 

annealing process at 200oC for 5min to eliminate the thermal history before 

experiencing other tests. 
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Figure 2. Schematic of layer-multiplying coextrusion system. (a and b) single screw 

extruder, (c) co-extrusion block, (d) layer-multiplying elements (LMEs), (e) exiting 

block, (f) rolling and cooling block, (g) extrudate with an alternating multilayer 

structure. 

 

2.3. Morphological Observation. Atomic force microscope (AFM, Anasys 

Instruments, Santa Barbara, CA) was utilized to give a high resolution of the layer 

structure through the tapping mode. The AFM height image was 12μm×12μm and the 

scan rate was 1Hz. No additional image processing was performed, other than 

flattening. 

2.4. Dynamic Mechanical Analysis (DMA). DMA analysis was carried out 

using a dynamic mechanical analyzer (Q800, TA Instrument, USA). The dimensions 

of each sample were 20 mm (length) × 4 mm (width) × 1.5 mm (thickness). The 

samples were heated at a heating rate of 3 oC /min from −70 to 140 oC using the 

tension mode with a strain amplitude of 0.04%. The testing frequency was maintained 

at 10 Hz.  
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2.5. Nano-Thermal Analysis (Nano-TA). The Nano-TA technique is a 

well-established local thermal analysis technique based on the afm+ system (Anasys 

Instruments, Santa Barbara, CA). Local thermal analysis was achieved using an 

AN2-200 μm Anasys ThermaLever probe to collect thermal transition and topological 

data on the nanoscale level. Prior to the experiments, the probe temperature was 

calibrated against standards with known melting points: poly(ɛ-caprolactone) (PCL, 

Tm = 55 oC), poly(ethylene) (PE, Tm = 116 oC) and poly(ethylene terephthalate) (PET, 

Tm = 235 oC). During the measurements, the probe was heated from 40 to 180 oC by 

applying a fast speed of 2.5 oC/s in order to eliminate the influence of surrounding 

environment. The maximum deflection of the probe is defined as the thermal 

transition temperature of a spot (Figure S1). Collecting the transition temperature of 

all the spots, a visible transition temperature mapping is then obtained. The testing 

area was a two-dimensional space, covering 5 μm (width) × 15 μm (length) across the 

interface of the sample and keeping along the layer direction.  

2.6. Broadband Dielectric Spectroscopy (BDS). Dielectric measurements were 

performed over a frequency range of 10-106 Hz on a Novocontrol Concept 50 system 

with Alpha impedance analyzer and Quatro Cryosystem temperature control. The 

disk-shaped specimens of about 1.5 mm thickness were kept between two parallel 

electrodes of 20 mm diameter. BDS spectra were collected in a temperature range 

from -70 to 130 oC at 5 oC intervals.  

2.7. Small-Angle X-ray Scattering (SAXS). SAXS measurements were 

performed using a Xeuss 2.0 system of Xenocs, France. A multilayer focused Cu Kα 



11 
 

X-ray source (GeniX3D Cu ULD, Xenocs SA, France, λ = 0.154 nm) and scatterless 

collimating slits were used during the experiments. The sample-to-detector distance 

was 2500 mm, providing scattering vector q range from 0.05 to 1.15 nm−1.  

2.8. Shape Memory Characterization. The triple- and quadruple-shape 

memory experiments were carried out using the same DMA instrument with tension 

mode. The dimensions of the samples were approximately 20 mm (length) × 1.5 mm 

(width) × 0.6 mm (thickness). For the triple-shape memory experiment (Figure S2), 

the sample was firstly deformed 30% at T1 (115 oC) with a rate of 20%/min, then 

followed by cooling to T2 (70, 65 or 60 oC). Stress was removed for 10 min to obtain 

the temporary shape one. The second stretching was performed at T2 to reach a final 

strain 60%. After cooling to 30 oC, the stress was again removed, achieving the 

second temporary shape. Finally, a free-strain recovery was conducted gradually by 

reheating to T2 and T1. The process for quadruple-shape memory characterization was 

similar. The related deformation temperatures were 120, 90 and 60 oC. Each MSME 

measurement was repeated three times under the same conditions. 

The shape fixation ratio (Rf) and recovery ratio (Rr) in these processes were 

calculated using the following two equations:  

 

where m and n denote two different shapes, εm represents the original strain, εn,load is 

the target strain during the deforming procedure (from m to n), εn means the fixed 

strain after removing the stress, and the εm,rec is the corresponding strain after shape 
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recovery. 

2.9. Polarized Infrared Spectroscopy. The molecular orientation under uniaxial 

stretching of multilayer and blend specimens was measured by the Thermo Nicolet 

iS10 Fourier-transform infrared spectroscopy (FTIR) spectrometer with a resolution 

of 2 cm−1 and an accumulation of 32 scans. The test slice samples with a thickness of 

about 30 μm were cut by a rotary Microtome (YD-2508B) along the flow direction. In 

order to eliminate the effects of thermal history, the samples were firstly annealed at 

200 oC for 5min. Then the slices were conducted uniaxial stretching by DMA Q800 

under tension mode. The samples were deformed to 60% at 115 oC followed by a 

quenching to 25 oC, the temporary shape was obtained after removing the stress. Then 

the molecular orientation of the sample was recorded in the transmittance mode with a 

rotatable polarizer. Samples and backgrounds were twice accumulated from 550 to 

1800 cm−1 with the polarizer at 0 and 90° respectively.  

The dichroic ratio D and Herman orientation function f can be obtained using the 

following equations: 

         D =
𝐴∥

𝐴⊥
      (3) 

f =
𝐷−1

𝐷+2
      (4) 

where A‖ and A⊥ are the areas of absorption peak parallel and perpendicular to the 

flow direction, respectively.  

2.10. Creep-Recovery Test. The creeping behaviors of the 1024-layer and the 

blend specimens were performed using the same DMA instrument with tension mode. 

The procedure included following steps: (1) heating up to 80 oC and equilibrium for 5 
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min; (2) imposing a constant external stress of 1 MPa on each specimen for 40 min; (3) 

recovering for another 30 min as removing the stress. During this process, the 

deforming strain of each specimen was recorded by the instrument. 

 

3. RESULTS AND DISCUSSION 

3.1. Microstructure and Distribution of Ttrans. Based on the thickness scale of 

each layer, the microstructures of some as-extruded specimens were observed through 

AFM (Figure 3a) or PLM (Figure S3). It is clearly presented that the multilayer 

structure is well-defined even when the number of layers reaches 1024. The PVDF 

and PMMA layers are alternately assembled forming numerous parallel-distributed 

layer interfaces, which offers a regular architecture for tailoring the distribution of 

Ttrans through the layer multiplication. In present study, an advanced AFM combined 

with a nano-thermal analysis technique (Nano-TA) was applied to in-situ track the 

Ttrans around a layer interface.[29, 30] Figure 3b and Figure S1 describe the 

measuring procedure. The probe was locally heated on selected spots and the 

deflection of the cantilever was recorded. The temperature causing the maximum 

deflection was defined as the Ttrans of that point.[30] Thus, the Ttrans mapping of a 

rectangular domain was obtained by collecting the results of 90 spots and it clearly 

exhibited different patterns as the number of layers changes (Figure 3c). For the 

16-layer specimen, there is a definite interface and the Ttrans of two adjacent layers is 

easily distinguished by the colors. The high-Ttrans side (120~150 oC) corresponds to 

the PVDF layer and the low-Ttrans side (100~115 oC) corresponds to the PMMA layer. 
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It can be noted that the Ttrans close to the interface exhibits a comparatively lower 

value, which represents that interfacial diffusion or interaction may actuate the 

mobility of molecular chains. When the layer numbers reach 128, a distinct Ttrans 

reduction occurs on the PMMA side and this tendency is strengthened by further 

increasing the layers to 1024. The Ttrans in most parts of the PMMA layer is reduced 

below 80 oC with a minimum value approaching 60 oC. This evidences that the Ttrans 

can be effectively broadened through layer multiplication. Considering that the 

well-organized alternating layers have been proved by the microstructural images, the 

irregular interfaces appearing in the Ttrans map might originate from a variation in 

molecular motions rather than from interlayer turbulence or component mixing. 

 

Figure 3. (a) AFM height image of 1024-layer PVDF/PMMA specimen using tapping 

mode; (b) Illustration of the Nano-TA measurement performed on a multilayer 

specimen (the insert micrograph is the height image of a specimen where a domain 

with 5 μm (width) × 15 μm (length) around an interface was chosen to test the Ttrans, 
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the blue spots are the testing points); (c) The Ttrans mapping of 16-, 128- and 

1024-layer PVDF/PMMA specimens obtained through an AFM instrument combining 

Nano-TA technique.  

 

3.2. Origin of Broad Ttrans. With regard to the amorphous PMMA side, the 

variation of Ttrans should be dominated by its glass transition temperature (Tg, PMMA). 

Hence, the loss factor of the specimens with different layers as a function of 

temperature are compared in Figure 4a (the related storage modulus spectra is also 

supplied in Figure S4) and some corresponding results are given in Table 1. These 

spectra exhibit two glass transition peaks: The one appearing on the high-temperature 

side corresponds to the Tg,PMMA and the other corresponds to the Tg of the PVDF layer 

(Tg,PVDF). With increasing the layer numbers, the loss peak of PVDF gradually 

weakened and the one related to PMMA tended to move towards lower temperature 

together with increased broadness and sharply reduced storage modulus, which were 

commonly ascribed to the plasticizing effect of non-crystalline PVDF chains.[28, 31] 

When the layer numbers reached 1024, the thermal transition range is greatly 

expanded and even gets close to that of the blend specimen with the same 

compositions (Figure S5) due to the interfacial diffusion. For 1024-layer specimen, 

the Tg,PMMA approached to 86 oC and its full width at half maximum (FWHM) was as 

high as 63 oC, in contrast to the 16-layer specimen which had values of 121 and 26 oC. 

This trend is basically in agreement with that of the Ttrans map in PMMA side. On the 

other hand, PVDF had a much lower Tg than PMMA, but its segmental motion would 
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be restrained by crystalline regions which have a high melting temperature (Tm). Thus, 

it is reasonable that the Ttrans of PVDF layers is much larger than that of PMMA layers. 

Figure 4b shows the heating scans of a series of multilayer systems with the 

corresponding Tm and crystallinity (Xc) listed in Table 1. When the layer numbers 

were increased from 16 to 1024, the Tm was reduced by 3.2 oC and the Xc also 

presented a slight reduction. The suppression of the crystallization suggests a potential 

influence originating from the enriched interfaces between PVDF and PMMA layers 

with the layer multiplication. 

Figure 4. Spectra of 16-, 128-, 256-, 512- and 1024-layer PVDF/PMMA specimens as 

a function of temperature, measured through (a) DMA (heating rate: 3 oC/min) and (b) 

DSC (heating rate: 10 oC/min). 

 

Table 1. The Tg,PMMA, FWHM, Tm and Xc of 16-, 128-, 256-, 512- and 1024-layer 

PVDF/PMMA specimens obtained from DMA and DSC spectra. 
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3.3. Compositional Interaction. The neat PVDF and PMMA as well as their 16-, 

128- and 1024-layer specimens were chosen to perform the BDS measurement, which 

was widely recognized as one of helpful methods to understand the compositional 

interaction from the viewpoint of the molecular relaxation[31, 32]. The test 

temperature was 80 oC and the frequency was in the range of 10-106 Hz, because the 

relaxation of the amorphous portions within the crystalline phase of PVDF (αc,PVDF) 

and the localized motions in the side groups of PMMA (βPMMA) may appear 

distinguishable in terms of previous studies.[33, 34] As shown in Figure 5a, all 

multilayer specimens exhibit a single relaxation peak located intermediately between 

αc,PVDF and βPMMA. Since the neat polymers were combined layer-by-layer, the present 

system could be approximately regarded as a multilayer-assembled capacitor and its 

theoretical permittivity was simply calculated in accordance with a “series model”.[35] 

It can be observed that the peak profile and the position of the theoretical curve are 

basically in agreement with the measured result for the 16-layer specimen, which 

indicates that the relaxation peak is component-dependent when there are several 

layers. However, the layer multiplication induced a deviation toward the 

high-frequency side. To quantitatively describe the development of these relaxation 
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peaks, all experimental curves were fitted using the Havriliak-Negami (HN) empirical 

equation[16]. 

ε∗(𝜔) = 𝜀∞ +
∆𝜀

[1+(𝑖𝜔𝜏𝐻𝑁)𝛼]𝛽 = 𝜀′ − 𝑖𝜀′′     (5) 

where, ε* is the complex dielectric permittivity, ∆ε is the dielectric strength, ω is the 

angular frequency, τHN is the characteristic relaxation time, α and β (0< α, αβ <1) are 

defined as the symmetry and asymmetry shape parameters representing the relaxation 

time distribution. All fitting curves are plotted in Figure 3a and basically overlap with 

the corresponding experimental points. α and τHN values are collected and compared 

in Table 2. It can be noted that the layer multiplication causes each parameter value to 

approach that of neat PMMA, which signifies that the αc,PVDF tends to be suppressed 

with the increase of layer interfaces. In order to further detect the influence of 

interfacial diffusion on the relaxation of PVDF molecules, SAXS was carried out and 

the normalized Lorentz-corrected Kratky plots (I(q)*q2 versus q) for neat PVDF and 

the 16-, 128-, 1024-layer PVDF/PMMA specimens are shown in Figure 5b. The long 

period representing the average thickness of the interlamellar spacing (L) within the 

PVDF crystals can be obtained from the following equation, 

L= 2π/qmax     (6)  

where qmax is the location of each scattering peak. The results listed in Table 2 clearly 

show that the specimens with more interfaces exhibits a larger L value, which is 

commonly ascribed to the incorporation of more PMMA chains into the interlamellar 

and interspherulitic regions during the crystallization of PVDF.[34, 36, 37] 

Accordingly, a distinct multilayer structure is generated as illustrated in Figure 3c. 
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The compositional diffusion occurring around the layer interfaces strengthens the 

interaction between adjacent PVDF and PMMA “blocks” and causes a broad 

distribution of chain mobility. Like that in block copolymers, the PVDF crystals with 

higher Ttrans would act as physical networks connecting the surrounding amorphous 

chains with a broad Ttrans, which is regarded as a favorable architecture for MSMPs. 

 

Figure 5. (a) Dielectric loss (eps") spectra of neat PVDF and PMMA as well as their 

16-, 128- and 1024-layer specimens measured at 80 oC and in the range of 10-106 Hz 

(solid dots and lines represent measured results and fitting curves, respectively.); (b) 

Lorentz-corrected scattering intensity profiles of neat PVDF and 16-, 128-, 1024-layer 

specimens; (c) Schematic of potential microstructure originated from the interfacial 

diffusion in PVDF/PMMA multilayer specimens. 
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Table 2. Havriliak−Negami relaxation time (τHN) and shape parameter (α) 

obtained from BDS results; the qmax and L values of obtained from 2D-SAXS. 

 

 

3.4. MSME. By virtue of its distinct structure and broad Ttrans, the 1024-layer 

specimen was chosen for investigation of its MSME potential. The thermomechanical 

programming for the triple-shape memory test is depicted in Figure S2. The specimen 

was firstly stretched at T1 (115 oC), and then fixed at T2 (60, 65 or 70 oC). The second 

deformation was conducted at T2 and then fixed at T3 (30 oC). After that, a free strain 

recovery was carried out gradually by reheating the specimen to T2 and T1, 

respectively. The evolution of temperature, strain and stress during the process for 

1024-layer specimen is shown in Figure 6a-c, and the corresponding Rf and Rr values 

in triple shape memory cycles are listed in Table 3. It should be noted that different 

switching temperatures could be chosen freely from the broad glass transition range to 

achieve a tunable triple-shape memory effect (TSME). As the interval between the 

two different deformation temperatures (i.e. T1-T2) increased, the TSME performance 

of the material improved. When T2 was chosen at 60 oC, the Rf of two temporary 

shapes exceeded 90% for each shape and the Rr could be maintained above 80%. This 

means an appropriate temperature interval may not only freeze the segments to hold 

the temporary shapes but also store enough energy to contribute to recovery. For 
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comparison, the PVDF/PMMA blend with the same compositions was prepared by 

using conventional extrusion technology and its triple-shape memory performance 

(T1=115 oC, T2=60 oC) was displayed Figure 6d. Under the same testing conditions, 

the related Rf and Rr values of the blend was far away to catch up with that of the 

1024-layer specimen, although they owned a similar broadness of Tg range. 

 

Figure 6. Evolution of strain, stress, and temperature during triple-shape memory 

cycles for the 1024-layer specimen with switching temperatures of (a) 115 and 70 oC, 

(b) 115 and 65 oC, (c) 115 and 60 oC; and (d) for the blend specimen with switching 

temperatures of 115 and 60 oC. 

 

Table 3. The Rf and Rr of the PVDF/PMMA 1024-layer and blend specimens at 

each stage (the process is depicted in Figure S2) as a function of switch 

temperature in the triple-shape memory progress. 
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Beyond the TSME, the quadruple-shape memory effect (QSME) of the 

1024-layer and blend specimens were further concerned. The switching temperatures 

were chosen at 120, 90 and 60 oC and the totally deformation ratio was maintained at 

60%. As demonstrated in Figure 7a, the 1024-layer specimen could memorize as 

many as three distinct temporary shapes in a quadruple-shape memory cycle. The Rf 

of the first one temporary shape was 73% and the other two were around 85%. With 

regard to the shape recoverability, both the Rr values of the first two permanent shapes 

exceeded 87% and only the last one was below 80%, which was less reported in 

physically-compounding systems and even comparable to some of synthetic 

copolymers. Herein, the PVDF/PMMA blend was also chosen to give an example of a 

contrast. It can be noted from Figure 7b that both the Rf and Rr were far below those 

of the multilayer specimen. Particularly, the irreversible strain of the last permanent 

shape was 10% which was basically equal to that obtained in the first temporary shape. 

This indicates that the blend system could not memorize more than two temporary 

shapes, which should be one of possible reasons that very few melt-blended materials 

were reported to have good QSME. Furthermore, Figure 7c presents the 

quadruple-shape memory progress of the 1024-layer specimen recorded by a digital 

camera. The original shape was gradually deformed to “M” at 120, 90 and 60oC, 
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matching with the programming steps performed by DMA instrument. Then the 

temporary shape was recovered at 60, 90 and 120 oC, respectively. It can be observed 

that the multilayer specimen almost recovered back to the original shape and 

exhibited a promising application in meeting complex requirements of smart devices, 

which was previously recognized as a big challenge to physically compounding 

polymeric systems. 

 

Figure 7. Evolution of strain, stress, and temperature during a quadruple-shape 

memory cycle with the switching temperatures of 120, 90 and 60 oC for (a) 

1024-layer specimen and (b) the blend specimen; (c) The quadruple-shape memory 

progress of the 1024-layer specimen recorded by a digital camera. 
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3.5. Mechanisms. Above results strongly substantiate that an outstanding 

MSME may not only require a broad Ttrans range, but also depend on an optimal phase 

morphology. The microstructure of the blending and multilayer systems is 

schematically illustrated in Figure 8a. The PVDF and PMMA in the multilayer 

system are assembled in parallel. Although the blending system can also be divided 

into many parallel layers, the components in each layer are regarded to be assembled 

in series. Hence, the different phase continuity may play a significant role in each 

shape memory process.  

In the shape-fixing stage, a specimen would be thermally stretched at a specific 

temperature, so that the molecular chains tended to be aligned along the deforming 

direction. Taking this into account, both the blend and 1024-layer specimens were 

chosen to experience the same thermal stretching process at 115 oC which 

corresponds to the maximum temperature used in triple-shape memory process, and 

then be quickly quenched to 25 oC. To evaluate the orientation degree of molecule 

chains remained in each specimen, the polarized FTIR was conducted to collect the 

infrared spectra parallel and perpendicular to the deforming direction by rotating the 

wire-grid polarizer to 0 and 90°. The spectra in the range of 570-1800 cm-1 are 

compared in Figure 8b. The absorbance band around 615 cm-1 exhibiting obvious 

infrared dichroism was chosen to calculate the Herman orientation function (f) 

according to Eq. (3) and (4). The calculated results were inserted in above figure. For 

the 1024-layer specimen, its f value (0.25) was larger than that of the blend (0.17), 

which means more orientation could be obtained in the multilayer system when frozen 
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to a low temperature. According to previous studies,[17, 38] the parallel-organized 

components were regarded to be capable of maximizing their contribution to the 

mechanical deformation. Hence, the system with a high phase continuity should 

benefit for promoting the orientation of molecular chains which would act as 

mechanical support for maintaining a temporary shape in the shape-fixing stage. 

Inversely, when the specimens were reheated to a switching temperature, their stored 

elastic energy would transform into kinetic energy triggering the recovery of 

temporary shape. Based on the classic viscoelastic theory,[39, 40] the 

parallel-assembled components should have the same strain in the recovery process, 

so that they would be promoted each other through the interfacial shearing effect. 

However, the components assembled in series receive the same stress along the 

deforming direction, thus the strain of each component is mainly determined by its 

own viscoelastic behaviors and less influenced by another component. This implies 

that more irreversible deformation may be maintained in the blend than that in the 

multilayer system, which can be further demonstrated through a creep experiment. A 

constant external force was first hold on both the blend and 1024-layer specimens for 

40min at 80 oC and then unloaded immediately. During this process, the deforming 

strain of each specimen was recorded and exhibited in Figure 8c. It is clearly shown 

that a much larger deformation took place in the blend at the creeping stage but less 

than half of the strain was recovered after 70min. In contrast, only 22% strain was 

finally remained in the 1024-layer specimen after experiencing the same period. This 

signifies that less irreversible deformation might occur in the multilayer system, 
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which was regarded as the critical reason for obtaining a larger Rr during the shape 

memory process. Accordingly, the multilayer assembly reported in this work is 

reasonably considered to open another door to fabricate high-performance MSMPs for 

meeting the complex demands in smart applications.  

 

Figure 8. (a) Schematic microstructure of the 1024-layer and the blend specimens; (b) 

Polarized FTIR spectroscopy in the range of 570-1800 cm-1 measured at 0° (parallel 

to the deforming direction) and 90° (perpendicular to the deforming direction) for 

1024-layer and the blend specimens (both of the specimens are deformed at 115 oC 

and then fixed at 25 oC; the inserted figure is the enlarged image of the peak around 

615 cm-1); (c) Creep curves of the 1024-layer specimen and the blend specimen.  

 

4. CONCLUSIONS 

An effective physically-compounding strategy for fabricating 

alternately-organized multilayer structure was introduced to achieve outstanding 
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MSME. By virtue of good compatibility between PVDF and PMMA, their molecular 

chains could diffuse into each other at layer interfaces. Therefore, a broader and more 

continuous Ttrans range from PVDF to PMMA layers was generated with the 

multiplication of layers. The low-Ttrans side originated from the glass transition of 

PMMA. When the layer numbers were increased from 16 to 1024, the Tg,PMMA was 

reduced from 121 to 86 oC and the FWHM was expanded by 37 oC. It was 

demonstrated that the plasticization effect of non-crystalline PVDF chains broadened 

the relaxation distribution of amorphous chains of PMMA. On the other hand, the 

high-Ttrans side was dominated by the melting of PVDF crystals. The compositional 

diffusion strengthened the interaction between amorphous and crystalline domains 

leading to the reduction of crystallization degree and lamellar thickness. Such a 

unique multilayer network, where the crystals in PVDF layers with a higher Ttrans 

acting as physical networks connected the neighboring amorphous layers with a lower 

Ttrans, was regarded to be beneficial to achieve MSME. In comparison to the 

conventional melt blend possessing the same compositions and a similar Ttrans range, 

the 1024-layer specimen had a better TSME and even could successively memorize as 

many as three shapes in a quadruple-shape memory progress. Higher phase continuity 

as another important factor which benefited for the stress transfer was substantiated to 

play a significant role in strengthening the shape-fixing and -recovering ability during 

each shape-memory cycle. Accordingly, the multilayer assembly was believed as a 

promising physically-compounding strategy for fabricating a new kind of MSMPs 

with high phase continuity and tunable thermal transition to meet the applications in 
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complex conditions. 
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