92 research outputs found

    Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics

    Full text link
    Recently developed physics-informed neural network (PINN) has achieved success in many science and engineering disciplines by encoding physics laws into the loss functions of the neural network, such that the network not only conforms to the measurements, initial and boundary conditions but also satisfies the governing equations. This work first investigates the performance of PINN in solving stiff chemical kinetic problems with governing equations of stiff ordinary differential equations (ODEs). The results elucidate the challenges of utilizing PINN in stiff ODE systems. Consequently, we employ Quasi-Steady-State-Assumptions (QSSA) to reduce the stiffness of the ODE systems, and the PINN then can be successfully applied to the converted non/mild-stiff systems. Therefore, the results suggest that stiffness could be the major reason for the failure of the regular PINN in the studied stiff chemical kinetic systems. The developed Stiff-PINN approach that utilizes QSSA to enable PINN to solve stiff chemical kinetics shall open the possibility of applying PINN to various reaction-diffusion systems involving stiff dynamics

    An electro-hydrodynamics modeling of droplet actuation on solid surface by surfactant-mediated electro-dewetting

    Full text link
    We propose an electro-hydrodynamics model to describe the dynamic evolution of a slender drop containing a dilute ionic surfactant on a naturally wettable surface, with a varying external electric field. This unified model reproduces fundamental microfluidic operations controlled by electrical signals, including dewetting, rewetting, and droplet shifting. In this paper, lubrication theory analysis and numerical simulations illustrate how to electrically control the wettability of surface via the charged surfactant. Our numerical results show that electric field promotes dewetting by attracting ionic surfactants onto the transition thin-film region and promotes rewetting by attracting them away from the region.Comment: 16 pages, 13 figure

    Effects of Fertilization on Porewater Nutrients, Greenhouse-gas Emissions and Rice Productivity in a Subtropical Paddy Field

    Get PDF
    Suitable fertilization is crucial for the sustainability of rice production and for the potential mitigation of global warming. The effects of fertilization on porewater nutrients and greenhouse-gas fluxes in cropland, however, remain poorly known. We studied the effects of no fertilization (control), standard fertilization and double fertilization on the concentrations of porewater nutrients, greenhouse-gas fluxes and emissions, and rice yield in a subtropical paddy in southeastern China. Double fertilization increased dissolved NH4+ in porewater. Mean CO2 and CH4 emissions were 13.5% and 7.4%, and 20.4% and 39.5% higher for the standard and double fertilizations, respectively, than the control. N2O depositions in soils were 61% and 101% higher for the standard and double fertilizations, respectively, than the control. The total global warming potentials (GWPs) for all emissions were 14.1% and 10.8% higher for the standard and double fertilizations, respectively than the control, with increasing contribution of CH4 with fertilization and a CO2 contribution > 85%. The total GWPs per unit yield were significantly higher for the standard and double fertilizations than the control by 7.3% and 10.9%, respectively. The two levels of fertilization did not significantly increase rice yield. Prior long-term fertilization in the paddy (about 20 years with annual doses of 95 kg N ha−1, 70 kg P2O5 ha−1 and 70 kg K2O ha−1) might have prevented these fertilizations from increasing the yield. However, fertilizations increased greenhouse-gas emissions. This situation is common in paddy fields in subtropical China, suggesting a saturation of soil nutrients and the necessity to review current fertilization management. These areas likely suffer from unnecessary nutrient leaching and excessive greenhouse-gas emissions. These results provide a scientific basis for continued research to identify an easy and optimal fertilization management solution

    Adjuvant therapy for T3N0 rectal cancer in the total mesorectal excision era- identification of the high risk patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adjuvant therapy for T3N0 rectal cancer was controversial with respect to both radiation and the use of a combined regimen of chemotherapy. We evaluated both clinical features and biomarkers and sought to determine risk factors for those patients retrospectively.</p> <p>Methods</p> <p>A total of 122 patients with T3N0 rectal cancer were analyzed in this study from January 2000 to December 2005. Clinicopathologic and biomarkers were used to predict local recurrence (LR), disease-free survival (DFS), and overall survival (OS).</p> <p>Results</p> <p>The median follow-up interval was 45.4 months. Five-year LR, DFS, and OS rates were 10.4%, 68.3%, and 88.7%. Having a lower tumor location and showing low P21 and high CD44v6 expression were identified as risk factors for LR: patients with two or three of these risk factors had a higher 5-year LR rate (19.3%) than did patients with none or one of these risk factors (6.8%) (p = 0.05). A poorer DFS was related to low P21 nor high CD44v6 expression but not to tumor location: the 5-year DFS rates were 79.3% for those with neither, 65.9% for those with either one or the other, and 16.9% for those with both (p = 0.00).</p> <p>Conclusions</p> <p>The prognostic model including tumor location, P21 and CD44v6 expressions could help to distinguish these patients with high risk T3N0 patients and determine whether adjuvant therapy was beneficial.</p

    Effects of guanidinoacetic acid supplementation on liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks

    Get PDF
    Exogenous supplementation of guanidinoacetic acid can mechanistically regulate the energy distribution in muscle cells. This study aimed to investigate the effects of guanidinoacetic acid supplementation on liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks. We randomly divided 480 42 days-old female Jiaji ducks into four groups with six replicates and 20 ducks for each replicate. The control group was fed the basal diet, and the experimental groups were fed the basal diet with 400, 600, and 800 mg/kg (GA400, GA600, and GA800) guanidinoacetic acid, respectively. Compared with the control group, (1) the total cholesterol (p = 0.0262), triglycerides (p = 0.0357), malondialdehyde (p = 0.0452) contents were lower in GA400, GA600 and GA800 in the liver; (2) the total cholesterol (p = 0.0365), triglycerides (p = 0.0459), and malondialdehyde (p = 0.0326) contents in breast muscle were decreased in GA400, GA600 and GA800; (3) the high density lipoprotein (p = 0.0356) and apolipoprotein-A1 (p = 0.0125) contents were increased in GA600 in the liver; (4) the apolipoprotein-A1 contents (p = 0.0489) in breast muscle were higher in GA600 and GA800; (5) the lipoprotein lipase contents (p = 0.0325) in the liver were higher in GA600 and GA800; (6) the malate dehydrogenase contents (p = 0.0269) in breast muscle were lower in GA400, GA600, and GA800; (7) the insulin induced gene 1 (p = 0.0326), fatty acid transport protein 1 (p = 0.0412), and lipoprotein lipase (p = 0.0235) relative expression were higher in GA400, GA600, and GA800 in the liver; (8) the insulin induced gene 1 (p = 0.0269), fatty acid transport protein 1 (p = 0.0234), and lipoprotein lipase (p = 0.0425) relative expression were increased in GA400, GA600, and GA800 in breast muscle. In this study, the optimum dosage of 600 mg/kg guanidinoacetic acid improved the liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks

    Experimental study on a novel photovoltaic thermal system using amorphous silicon cells deposited on stainless steel

    Get PDF
    Amorphous silicon (a-Si) cells are able to perform better as temperature increases due to the effect of thermal annealing. a-Si cells have great potential to solve or ease the problems of high power temperature coefficient, large thermal stress caused by temperature fluctuation and gradient, and thick layer of conventional crystalline silicon cell-related photovoltaic/thermal (PV/T) collectors. In this paper, an innovative a-Si PV/T system is developed. It is the first time that a-Si cells deposited on stainless steel have been used in a practical PV/T system. The system comprises of two PV/T collectors. In each collector, there are 8 pieces of solar cells in series. Long-term outdoor performance has been monitored. Experimental results on the thermal efficiency Image 1, electrical efficiency Image 2 and I-V characteristic are presented. The peak instantaneous Image 3 was about 42.49% with the maximum Image 4 of 5.92% on April 2, 2017. The daily average Image 5 and Image 6 were 32.8% and 5.58%. Accordingly, Image 7 ,Image 8, Image 9 and Image 10 on October 27 were 43.47%, 5.69%, 38.65% and 5.22 %. During more than half a year operation, no technical failure of the system has been observed. The feasibility of the a-Si PV/T is preliminarily demonstrated by the prototype

    Towards Exascale Computation for Turbomachinery Flows

    Full text link
    A state-of-the-art large eddy simulation code has been developed to solve compressible flows in turbomachinery. The code has been engineered with a high degree of scalability, enabling it to effectively leverage the many-core architecture of the new Sunway system. A consistent performance of 115.8 DP-PFLOPs has been achieved on a high-pressure turbine cascade consisting of over 1.69 billion mesh elements and 865 billion Degree of Freedoms (DOFs). By leveraging a high-order unstructured solver and its portability to large heterogeneous parallel systems, we have progressed towards solving the grand challenge problem outlined by NASA, which involves a time-dependent simulation of a complete engine, incorporating all the aerodynamic and heat transfer components.Comment: SC23, November, 2023, Denver, CO., US

    TRH Analog, Taltirelin Protects Dopaminergic Neurons From Neurotoxicity of MPTP and Rotenone

    Get PDF
    Dopaminergic neurons loss is one of the main pathological characters of Parkinson’s disease (PD), while no suitable neuroprotective agents have been in clinical use. Thyrotropin-releasing hormone (TRH) and its analogs protect neurons from ischemia and various cytotoxins, but whether the effect also applies in PD models remain unclear. Here, we showed that Taltirelin, a long-acting TRH analog, exhibited the neuroprotective effect in both cellular and animal models of PD. The in vitro study demonstrated that Taltirelin (5 μM) reduced the generation of reactive oxygen species (ROS) induced by MPP+ or rotenone, alleviated apoptosis and rescued the viability of SH-SY5Y cells and rat primary midbrain neurons. Interestingly, SH-SY5Y cells treated with Taltirelin also displayed lower level of p-tau (S396) and asparagine endopeptidase (AEP) cleavage products, tau N368 and α-synuclein N103 fragments, accompanied by a lower intracellular monoamine oxidase-B (MAO-B) activity. In the subacute MPTP-induced and chronic rotenone-induced PD mice models, we found Taltirelin (1 mg/kg) significantly improved the locomotor function and preserved dopaminergic neurons in the substantia nigra (SN). In accordance with the in vitro study, Taltirelin down-regulated the levels of p-tau (S396), p-α-synuclein (S129) tau N368 and α-synuclein N103 fragments in SN and striatum. Together, this study demonstrates that Taltirelin may exert neuroprotective effect via inhibiting MAO-B and reducing the oxidative stress and apoptosis, preventing AEP activation and its subsequent pathological cleavage of tau and α-synuclein, thus provides evidence for Taltirelin in protective treatment of PD
    • …
    corecore