97 research outputs found

    Parallel numerical simulation for a super large-scale compositional reservoir

    Get PDF
     A compositional reservoir simulation model with ten-million grids is successfully computed using parallel processing techniques. The load balance optimization principle for parallel calculation is developed, which improves the calculation speed and accuracy, and provides a reliable basis for the design of reservoir development plan. Taking M reservoir as an example, the parallel numerical simulation study of compositional model with ten million grids is carried out. When the number of computational nodes increases, message passing processes and data exchange take much time, the proportion time of solving equation is reduced. When the CPU number increases, the creation of Jacobian matrix process has the higher acceleration ratio, and the acceleration ratio of I/O process become lower. Therefore, the I/O process is the key to improve the acceleration ratio. Finally, we study the use of GPU and CPU parallel acceleration technology to increase the calculation speed. The results show that the technology is 2.4 ∼ 5.4 times faster than CPU parallel technology. The more grids there are, the better GPU acceleration effect it has. The technology of parallel numerical simulation for compositional model with ten-million grids presented in this paper has provided the foundation for fine simulation of complex reservoirs.Cited as: Lian, P., Ji, B., Duan, T., Zhao, H., Shang, X. Parallel numerical simulation for a super large-scale compositional reservoir. Advances in Geo-Energy Research, 2019, 3(4): 381-386, doi: 10.26804/ager.2019.04.0

    Comparison of the nutrient resorption stoichiometry of Quercus variabilis Blume growing in two sites contrasting in soil phosphorus content

    Get PDF
    Key message Foliar phosphorus (P) resorption in Quercus variabilis Blume was significantly lower at a P-rich than at a P-deficient site. Moreover, P resorption strongly decreased, and nitrogen: phosphorus and carbon: phosphorus resorption ratios increased with soil P content. This demonstrates a strong link between foliar P resorption and P content in soils, and emphasizes the importance of P resorption in leaves of trees growing in soils with contrasted P content. Context Subtropical ecosystems are generally characterized by P-deficient soils. However, P-rich soils develop in phosphate rock areas. Aims We compared the patterns of nutrient resorption, in terms of ecological stoichiometry, for two sites naturally varying in soil P content. Methods The resorption efficiency (percentage of a nutrient recovered from senescing leaves) and proficiency (level to which nutrient concentration is reduced in senesced leaves) of 12 elements were determined in two oak (Q. variabilis) populations growing at a P-rich or a P-deficient site in subtropical China. Results P resorption efficiency dominated the intraspecific variation in nutrient resorption between the two sites. Q. variabilis exhibited a low P resorption at the P-rich site and a high P resorption at the P-deficient site. Both P resorption efficiency and proficiency strongly decreased with soil P content only and were positively related to the N:P and C:P ratios in green and senesced leaves. Moreover, resorption efficiency ratios of both N:P and C:P were positively associated with soil P. Conclusion These results revealed a strong link between P resorption and P stoichiometry in response to a P deficiency in the soil, and a single- and limiting-element control pattern of P resorption. Hence, these results provide new insights into the role of P resorption in plant adaptations to geologic variations of P in the subtropics.Peer reviewe

    H2S-based fluorescent imaging for pathophysiological processes

    Get PDF
    Hydrogen sulfide (H2S), as an important endogenous signaling molecule, plays a vital role in many physiological processes. The abnormal behaviors of hydrogen sulfide in organisms may lead to various pathophysiological processes. Monitoring the changes in hydrogen sulfide is helpful for pre-warning and treating these pathophysiological processes. Fluorescence imaging techniques can be used to observe changes in the concentration of analytes in organisms in real-time. Therefore, employing fluorescent probes imaging to investigate the behaviors of hydrogen sulfide in pathophysiological processes is vital. This paper reviews the design strategy and sensing mechanisms of hydrogen sulfide-based fluorescent probes, focusing on imaging applications in various pathophysiological processes, including neurodegenerative diseases, inflammation, apoptosis, oxidative stress, organ injury, and diabetes. This review not only demonstrates the specific value of hydrogen sulfide fluorescent probes in preclinical studies but also illuminates the potential application in clinical diagnostics

    Mapping the Galactic disk with the LAMOST and Gaia Red clump sample: I: precise distances, masses, ages and 3D velocities of \sim 140000 red clump stars

    Get PDF
    We present a sample of \sim 140,000 primary red clump (RC) stars of spectral signal-to-noise ratios higher than 20 from the LAMOST Galactic spectroscopic surveys, selected based on their positions in the metallicity-dependent effective temperature--surface gravity and color--metallicity diagrams, supervised by high-quality KeplerKepler asteroseismology data. The stellar masses and ages of those stars are further determined from the LAMOST spectra, using the Kernel Principal Component Analysis method, trained with thousands of RCs in the LAMOST-KeplerKepler fields with accurate asteroseismic mass measurements. The purity and completeness of our primary RC sample are generally higher than 80 per cent. For the mass and age, a variety of tests show typical uncertainties of 15 and 30 per cent, respectively. Using over ten thousand primary RCs with accurate distance measurements from the parallaxes of Gaia DR2, we re-calibrate the KsK_{\rm s} absolute magnitudes of primary RCs by, for the first time, considering both the metallicity and age dependencies. With the the new calibration, distances are derived for all the primary RCs, with a typical uncertainty of 5--10 per cent, even better than the values yielded by the Gaia parallax measurements for stars beyond 3--4 kpc. The sample covers a significant volume of the Galactic disk of 4R164 \leq R \leq 16 kpc, Z5|Z| \leq 5 kpc, and 20ϕ50-20 \leq \phi \leq 50^{\circ}. Stellar atmospheric parameters, line-of-sight velocities and elemental abundances derived from the LAMOST spectra and proper motions of Gaia DR2 are also provided for the sample stars. Finally, the selection function of the sample is carefully evaluated in the color-magnitude plane for different sky areas. The sample is publicly available.Comment: 16 pages, 19 figures, 3 tables, accepted for publication in ApJ

    PLANCK COLD CLUMPS IN THE lambda ORIONIS COMPLEX. I. DISCOVERY OF AN EXTREMELY YOUNG CLASS 0 PROTOSTELLAR OBJECT AND A PROTO-BROWN DWARF CANDIDATE IN THE BRIGHT-RIMMED CLUMP PGCC G192.32-11.88

    Get PDF
    We are performing a series of observations with ground-based telescopes toward Planck Galactic cold clumps (PGCCs) in the lambda Orionis complex in order to systematically investigate the effects of stellar feedback. In the particular case of PGCC G192.32-11.88, we discovered an extremely young Class 0 protostellar object (G192N) and a proto-brown dwarf candidate (G192S). G192N and G192S are located in a gravitationally bound brightrimmed clump. The velocity and temperature gradients seen in line emission of CO isotopologues indicate that PGCC G192.32-11.88 is externally heated and compressed. G192N probably has the lowest bolometric luminosity (similar to 0.8 L-circle dot) and accretion rate (6.3 x 10(-7) M-circle dot yr(-1)) when compared with other young Class 0 sources (e.g., PACS Bright Red Sources) in the Orion complex. It has slightly larger internal luminosity (0.21 +/- 0.01 L-circle dot) and outflow velocity (similar to 14 km s(-1)) than the predictions of first hydrostatic cores (FHSCs). G192N might be among the youngest Class 0 sources, which are slightly more evolved than an FHSC. Considering its low internal luminosity (0.08 +/- 0.01 L-circle dot) and accretion rate (2.8 x 10(-8) M-circle dot yr(-1)), G192S is an ideal proto-brown dwarf candidate. The star formation efficiency (similar to 0.3%-0.4%) and core formation efficiency (similar to 1%) in PGCC G192.32-11.88 are significantly smaller than in other giant molecular clouds or filaments, indicating that the star formation therein is greatly suppressed owing to stellar feedback.Peer reviewe

    The Infection and Impact of Azorhizobium Caulinodans ORS571 on Wheat (Triticum Aestivum L.)

    Get PDF
    Based on our previous study, cereal crop wheat (Triticum aestivum L.) could be infected by rhizobia Azorhizobium caulinodans ORS571, and form para-nodules with the induction of 2.4-dichlorophenoxyacetic acid, a common plant growth regulator. To enhance this infection and the potential agricultural application, we compared six different infection methods (Direct seed dip; Seed germination dip; Pruned-root dip; Foliar spray; Circum-soil dip; Seed dip and circum-soil dip) for achieving the high efficient infection of A. caulinodans into wheat plants by employing a green fluorescent protein (gfp)-labeled Azorhizobium caulinodans strain ORS571. With proper methods, copious rhizobia could enter the interior and promote the growth of wheat to the hilt. Circum-soil dip was proved to be the most efficient method, seed germination dip and pruned-root dip is the last recommended to infect wheat, seed germination dip and seed dip and circum-soil dip showed better effects on plant growth, pruned-root dip did not show too much effect on plant growth. This study laid the foundation for understanding the interaction between rhizobia and cereal crops and the growth-promoting function of rhizobia

    Ozone detection based on an nitrogen oxide photoacoustic spectroscopy system and chemical reaction

    No full text
    Ozone is known as a “god-given purifying agent”, and its quantitative detection is of great significance. A low-cost photoacoustic spectroscopy (PAS) which is based on absorption at the low-power blue diode emitting at 403.65 nm has been used for nitrogen oxide (NO2) concentration measurements. According to the formula of nitric oxide (NO) reaction and ozone (O3) production of NO2and the differential detection method, a dual-channel PAS system for O3 detection is reported. The consistency of NO2detection with the dual-channel photoacoustic spectroscopy system is good by contrast. The coefficient of determination R2 can still reach 0.846. An intercomparison between the system and a cavity ring-down system (CRDS) was shown to verify the accuracy. The results showed a linear correction factor (R2) of 0.943 in a slope of 0.862±0.002, with an offset of (0.773±0.128) ppb. In addition, the measurement of 3using the dual-channel cavity photoacoustic spectroscopy technique was deployed. These observations indicate that 3concentrations can be effectively observed with the dual-channel PAS instrument
    corecore