82 research outputs found

    Simultaneous measurement of multiple organic tracers in fine aerosols from biomass burning and fungal spores by HPLC-MS/MS

    Get PDF
    Three monosaccharide anhydrides (MAs: levoglucosan, mannosan, and galactosan) and sugar alcohols (arabitol and mannitol) are widely used as organic tracers for source identification of aerosols emitted from biomass burning and fungal spores, respectively. In the past, these two types of organic tracer have been measured separately or conjointly using different analytical techniques, with which a number of disadvantages have been experienced during the application to environmental aerosol samples, including organic solvent involved extraction, time-consuming derivatization, or poor separation efficiency due to overlapping peaks, etc. Hence, in this study a more environment-friendly, effective and integrated extraction and analytical method has been developed for simultaneous determination of the above mentioned organic tracers in the same aerosol sample using ultrasonication and high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The ultrasonication assisted extraction process using ultrapure water can achieve satisfactory recoveries in the range of 100.3 ± 1.3% to 108.4 ± 1.6% for these tracers. All the parameters related to LC and MS/MS have been optimized to ensure good identification and pronounced intensity for each compound. A series of rigorous validation steps have been conducted. This newly developed analytical method using ultrasonication and HPLC-MS/MS has been successfully applied to environmental aerosol samples of different pollution levels for the simultaneous measurement of the above mentioned five organic tracers from biomass burning and fungal spores

    Rosmarinic Acid Alleviates the Endothelial Dysfunction Induced by Hydrogen Peroxide in Rat Aortic Rings via Activation of AMPK

    Get PDF
    Endothelial dysfunction is the key player in the development and progression of vascular events. Oxidative stress is involved in endothelial injury. Rosmarinic acid (RA) is a natural polyphenol with antioxidative, antiapoptotic, and anti-inflammatory properties. The present study investigates the protective effect of RA on endothelial dysfunction induced by hydrogen peroxide (H2O2). Compared with endothelium-denuded aortic rings, the endothelium significantly alleviated the decrease of vasoconstrictive reactivity to PE and KCl induced by H2O2. H2O2 pretreatment significantly injured the vasodilative reactivity to ACh in endothelium-intact aortic rings in a concentration-dependent manner. RA individual pretreatment had no obvious effect on the vasoconstrictive reaction to PE and KCl, while its cotreatment obviously mitigated the endothelium-dependent relaxation impairments and the oxidative stress induced by H2O2. The RA cotreatment reversed the downregulation of AMPK and eNOS phosphorylation induced by H2O2 in HAEC cells. The pretreatment with the inhibitors of AMPK (compound C) and eNOS (L-NAME) wiped off RA’s beneficial effects. All these results demonstrated that RA attenuated the endothelial dysfunction induced by oxidative stress by activating the AMPK/eNOS pathway

    A new vehicle specific power method based on internally observable variables: Application to CO2 emission assessment for a hybrid electric vehicle

    Get PDF
    As an important vehicle activity recognition method, vehicle specific power (VSP) has been widely used for on-road traffic emission modelling since its introduction in 1999. The conventional VSP (VSP_veh) is calculated from externally observable variables (EOVs) on the vehicle level and represents the power that a running vehicle needs to overcome. However, for hybrid electric vehicles (HEVs) with two power sources, vehicle activity is not always directly related to engine emissions. This study introduces the engine level VSP (VSP_eng), which estimates engine power from internally observable variables (IOVs) obtained from the vehicle’s on-board electronic control unit (ECU). An engine bench test is first implemented to validate the estimation algorithm for VSP_eng. A real-world driving emission (RDE) test is then conducted with a HEV in Ningbo city of China to evaluate the performance of VSP_veh and VSP_eng in emission estimation. The results show a strong correlation between emission and VSP_eng (R2 = 0.9783), while a much weaker correlation was found between emission and VSP_veh (R2 = 0.4216). Further analysis indicates that this strong correlation between emission and VSP_eng applies to all driving conditions (urban, rural and highway). The differences between VSP_veh and VSP_eng are then highlighted by a combined correlation analysis where the four work modes of HEV can be graphically identified. Lastly, this study discusses the feasibility and potential benefits of the intelligent and remote vehicle emissions monitoring through the upcoming vehicle to everything (V2X) network

    Decadal soil carbon accumulation across Tibetan permafrost regions

    Get PDF
    Acknowledgements We thank the members of Peking University Sampling Teams (2001–2004) and IBCAS Sampling Teams (2013–2014) for assistance in field data collection. We also thank the Forestry Bureau of Qinghai Province and the Forestry Bureau of Tibet Autonomous Region for their permission and assistance during the sampling process. This study was financially supported by the National Natural Science Foundation of China (31670482 and 31322011), National Basic Research Program of China on Global Change (2014CB954001 and 2015CB954201), Chinese Academy of Sciences-Peking University Pioneer Cooperation Team, and the Thousand Young Talents Program.Peer reviewedPostprintPostprin

    The relationship between niche breadth and range size of beech (Fagus) species worldwide

    Get PDF
    Aim: This work explores whether the commonly observed positive range size–niche breadth relationship exists for Fagus, one of the most dominant and widespread broad-leaved deciduous tree genera in temperate forests of the Northern Hemisphere. Additionally, we ask whether the 10 extant Fagus species’ niche breadths and climatic tolerances are under phylogenetic control. Location: Northern Hemisphere temperate forests. Taxon: Fagus L. Methods: Combining the global vegetation database sPlot with Chinese vegetation data, we extracted 107,758 relevés containing Fagus species. We estimated biotic and climatic niche breadths per species using plot-based co-occurrence data and a resource-based approach, respectively. We examined the relationships of these estimates with range size and tested for their phylogenetic signal, prior to which a Random Forest (RF) analysis was applied to test which climatic properties are most conserved across the Fagus species. Results: Neither biotic niche breadth nor climatic niche breadth was correlated with range size, and the two niche breadths were incongruent as well. Notably, the widespread North American F. grandifolia had a distinctly smaller biotic niche breadth than the Chinese Fagus species (F. engleriana, F. hayatae, F. longipetiolata and F. lucida) with restricted distributions in isolated mountains. The RF analysis revealed that cold tolerance did not differ among the 10 species, and thus may represent an ancestral, fixed trait. In addition, neither biotic nor climatic niche breadths are under phylogenetic control. Main Conclusions: We interpret the lack of a general positive range size–niche breadth relationship within the genus Fagus as a result of the widespread distribution, high among-region variation in available niche space, landscape heterogeneity and Quaternary history. The results hold when estimating niche sizes either by fine-scale co-occurrence data or coarse-scale climate data, suggesting a mechanistic link between factors operating across spatial scales. Besides, there was no evidence for diverging ecological specialization within the genus Fagus

    Smart Grid Dispatching Optimization for System Resilience Improvement

    No full text
    A large number of modern communication technologies and sensing technologies are incorporated into the smart grid, which makes its structure unique. The centralized optimized dispatch method of traditional power grids is difficult to achieve effective dispatch of smart grids. Based on the analysis of power generation plan and maintenance plan optimization model, this paper establishes a smart grid power generation and maintenance collaborative optimization model with distributed renewable energy. The objective function of this collaborative optimization problem is the operating cost of conventional units, the cost of wind power generation, and the cost of overhauling units; the constraints considered mainly include system constraints and overhaul constraints. The solution method of combinatorial optimization is analyzed, and the genetic optimization algorithm adopted in this paper is selected and discussed. According to the characteristics of the system, various loads are modeled, and power supply constraints are considered. By establishing an effective objective function, the adjustable load scheduling problem is transformed into a solvable optimal control problem. Taking into account the uncertain factors in the system, the advantage of the real-time control system is that it can realize the dynamic update scheduling of the load, so it is more in line with the requirements of the actual system. The real-time algorithm proposed in the paper is based on a distributed control strategy, which can not only realize dynamic compensation for random fluctuations in renewable energy power generation but also satisfy the load curve optimization under the premise of making full use of power supply resources. In addition, simulation experiments compare the load dispatching capabilities of the proposed algorithm with the existing algorithms, thereby verifying the performance of the proposed method

    The Role of Perceived Social Support and Stress in the Relationship between Hope and Depression among Chinese Shadow Education Tutors: A Serial Mediation Model

    No full text
    The association between hope and depression has been studied, leaving the underlying mechanism of how hope might predict depression unexplored. With a cross-sectional design, this study investigated two possible mediating factors in the relationship between hope and depression among Chinese shadow education tutors, who confront a high turnover rate and are at high risk for depression. Altogether, 221 tutors participated in the survey, and reported their dispositional hope, perceived social support (PSS), perceived stress (PS), and depression. Results indicated that both PSS and PS mediated the relationship between hope and depression. Results also supported the hypothesized serial mediating effect. In other words, hope as a positive disposition may promote PSS, which can mitigate PS. The reduced PS, in turn, alleviates depression. This finding not only shed light on the independent and accumulative mediating effects of PSS and PS, but also has implications for preventive interventions among Chinese shadow education tutors experiencing the enormous pressure of instability. This serial mediation model should be confirmed by further longitudinal study

    Patterns and determinants of wood physical and mechanical properties across major tree species in China

    No full text
    The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution

    Edaphic rather than climatic controls over C-13 enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau

    No full text
    1. Soil organic carbon (SOC) dynamics is crucial for evaluating ecosystem carbon balance and its feedback to climate warming. However, it is difficult to detect statistically significant changes in SOC stock over short-time period due to its large pool size, slow turnover time and huge spatial heterogeneity. Stable isotopic measurements, such as Delta delta C-13 (i.e. the difference of natural abundance of C-13 and C-12 (delta C-13) between surface soils and source plants) and its variations along environmental gradients provide an alternative approach inferring soil carbon dynamics over broad geographical scale. However, current isotopic evidence is primarily derived from temperate and tropical regions, with very limited measurements available in alpine regions. 2. Here, we examined spatial variations of Delta delta C-13 in alpine grasslands on the Tibetan Plateau, using large-scale isotopic measurements obtained from consecutive field samplings. We aimed to test whether previously observed isotopic patterns in temperate and tropical regions still hold true in alpine regions and whether climatic or edaphic variables regulated large-scale patterns of C-13 enrichment between soil and vegetation in alpine ecosystems. 3. Our results showed that topsoil stable carbon isotope composition in alpine steppe and meadow ranged from -26.1 parts per thousand to -19. 7 parts per thousand and from -25.7 parts per thousand to -22.2 parts per thousand, with an average of -23.7 parts per thousand and -24.1 parts per thousand, respectively. As previously observed in temperate forests, soil delta C-13 exhibited linear increases with plant delta C-13 in alpine grasslands. 4. In contrast to earlier findings, our results revealed that edaphic rather than climatic factors regulated spatial variability of the Delta delta C-13 in high-altitude regions. Moreover, edaphic controls over Delta delta C-13 exhibited meaningful differences between alpine steppe and meadow. The Delta delta C-13 exhibited an initial increase and a subsequent decrease with soil carbon content in alpine steppe, but was negatively associated with silt content and carbon: nitrogen ratio in alpine meadow. 5. Our results confirmed the association between the delta C-13 of surface soils and vegetation across contrasting ecosystems, but revealed that edaphic rather than climatic variables were better explanations of C-13 enrichment between soil and vegetation at high altitudes. Changes in soil texture and substrate quality could therefore induce soil carbon dynamics in alpine ecosystems
    corecore