14 research outputs found

    Neem oil and crop protection: from now to the future

    Get PDF
    A major challenge of agriculture is to increase food production to meet the needs of the growing world population, without damaging the environment. In current agricultural practices, the control of pests is often accomplished by means of the excessive use of agrochemicals, which can result in environmental pollution and the development of resistant pests. In this context, biopesticides can offer a better alternative to synthetic pesticides, enabling safer control of pest populations. However, limitations of biopesticides, including short shelf life, photosensitivity, and volatilization, make it difficult to use them on a large scale. Here, we review the potential use of neem oil in crop protection, considering the gaps and obstacles associated with the development of sustainable agriculture in the not too distant future7FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2014/20273-4; 2013/12322-2; 2014/20286-9; 2015/15617-9; 2015/17120-

    Neem Oil and Crop Protection: From Now to the Future

    Get PDF
    In current agricultural practices, the control of pests is often accomplished by means of the excessive use of agrochemicals, which can result in environmental pollution and the development of resistant pests. A major challenge of agriculture is to increase food production to meet the needs of the growing world population, without damaging the environment. In this context, biopesticides can offer a better alternative to synthetic pesticides, enabling safer control of pest populations. However, limitations of biopesticides, including short shelf life, photosensitivity, and volatilization, make it difficult to use them on a large scale. Here, we investigate the potential use of neem oil in crop protection, considering the gaps and obstacles associated with the development of sustainable agriculture in the not too distant future

    Estudos sobre a paz e cultura da paz

    Get PDF
    Segundo o autor, a cultura da paz implica uma mudança quer na forma como a “alta cultura” lida com a realidade quer no tipo de abordagem que o senso comum faz às relações sociais, sendo que a ruptura com a ideologia conservadora, ou seja, com o senso comum realista só é possível graças a estas alterações. O autor realça tanto a importância que os estudos sobre a paz têm para o surgimento de um conceito amplo de paz, desenvolvido por Johan Galtung, como o facto destes estarem estrategicamente orientados para a transformação do sistema internacional. Sequentemente, conclui que a paz é uma categoria moral e cultural que só pode ser alcançada através do comportamento quotidian

    Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans

    No full text
    The extensive use of pesticides is causing environmental pollution, affecting animal organisms in different habitats and also leading human health at risk. In this study, we present as an alternative the use of nanoparticles loaded with pesticides and report their toxicological assessment to a soil organism, Caenorhabdilis elegans. Three nanopartide formulations were analyzed: solid lipid nanoparticles loaded or not with atrazine and simazine, SLN; polymeric nanopartides, NC_PCL loaded with atrazine; and chitosan/tripolyphosphate, CS/TPP, loaded or not with paraquat. All formulations, loaded or not with pesticides, increased lethality in a dose-dependent manner with similar LC50. Both loaded and unloaded NC_PCI. were the most toxic formulations to developmental rate, significantly reducing worms length, even at low concentrations. In contrast, both CS/ TPP nanopartides were the least toxic, not affecting reproduction and body length at higher concentrations, probably due to the biocompatibility of chitosan. The physico-chemical characterization of nanopartides after incubation in saline solution (used in exposure of organisms) has shown that these colloidal systems are stable and remain with the same initial characteristics, even in the presence of saline environment. Notably, our results indicate that the observed effects were caused by the nanoparticles per se. These results suggest that the development of nanoparticles aiming agriculture applications needs more studies in order to optimize the composition and then reduce their toxicity to non-target organisms139245253CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO GRANDE DO SUL - FAPERGSsem informação2014/20273-4; 2014/20286-9; 2013-12322-2; 2015/15617-91919 12-

    Poly(ethylene glycol) and Cyclodextrin-Grafted Chitosan: From Methodologies to Preparation and Potential Biotechnological Applications

    No full text
    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field

    Use of botanical insecticides for sustainable agriculture : future perspectives

    No full text
    Recent decades have witnessed major growth in the use of agrochemicals worldwide, – for maximizing the food production for a rapidly growing human population. However, the indiscriminate use of these substances especially the pesticides has led to the accumulation of toxic residues in food, soil, air, and water, as well as the development of resistance in pests. Moreover, pesticides affect soil enzymes, which are essential catalysts that govern soil quality. In order to meet the food security, it is necessary to produce more food, sustainably and safely, in a diminishing area of available arable land and with decreased water resources. Given this situation, there is an increased interest in the use of alternative substances to synthetic agrochemicals that present less risk to the environment and human health while increasing the food safety. Promising results have been obtained using compounds derived from aromatic plants for the control of agricultural pests. Such compounds of botanical origin can be highly effective, with multiple mechanisms of action, while at the same time having low toxicity towards nontarget organisms. However, the large-scale application of these substances for pest control is limited by their poor stability and other technological issues. In this backdrop, the present work discusses perspectives for the use of compounds of botanical origin, as well as strategies employing the encapsulation techniques that can contribute to the development of systems for use in sustainable agricultural practices105483495FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2014/20273-4; 2014/20286-9; 2015/15617-

    Post-Emergence Herbicidal Activity of Nanoatrazine Against Susceptible Weeds

    No full text
    Poly(ε-caprolactone) (PCL) nanocapsules have been previously developed as a carrier system for atrazine. However, the efficacy of this nanoformulation against weeds commonly found in crop cultures has not been tested yet. Here, we evaluated the post-emergence herbicidal activity of PCL nanocapsules containing atrazine against Amaranthus viridis (slender amaranth) and Bidens pilosa (hairy beggarticks), in comparison with a commercial formulation of atrazine. For both species, treatment with atrazine-loaded nanocapsules (at 2,000 g ha−1) led to a greater decrease in the photosystem II activity (above 50% inhibition relative to the control) than the commercial atrazine formulation at the same concentration (around 40% inhibition). The growth of A. viridis plants was equally reduced by nanoatrazine and commercial formulation (above 64% for root and 75% for shoot). In the case of B. pilosa, atrazine-loaded nanocapsules decreased more effectively the root and shoot growth than the commercial formulation, leading to a loss of plant biomass. Moreover, for both species, the use of 10-fold diluted atrazine-loaded PCL nanocapsules (200 g ha−1) resulted in the same inhibitory effect in root and shoot growth as the commercial formulation at the standard atrazine dose. These results suggest that the utilization of atrazine-containing PCL nanocapsules potentiated the post-emergence control of A. viridis and B. pilosa by the herbicide. Thus, this nanoformulation emerges as an efficient alternative for weed control

    In vitro manipulation of the bacterial community to improve the performance of bioflocs in aquaculture systems

    Get PDF
    Abstract Although biofloc technology is already recognized as advantageous and practical for aquaculture for the effects of maintaining water quality and improving the health status and resistance of cultivated animals against pathogens, little is known about the way of action involved. This study aimed to evaluate the performance of bacterial groups as inducers in the formation of flocs compared to a system with spontaneous formation. Therefore, three microsystems were built in 3L tanks with constant aeration to induce the biofloc aggregation with addition of bacterial consortiuns with differentiated functions. It was used a control, without addition of bacterial consortium; B1 with addition of probiotic bacteria consortium; and B2, with adding nitrifying bacteria consortium. During the experimental period were evaluated physicochemical variables and quantifications of bacterial cultivable groups: Heterotrophic Bacteria and Vibrio. Also was the microscopic characterization of the flakes and tests of antimicrobial activity against pathogenic bacteria. Systems B1 and B2 showed promising results in relation to control (spontaneous bioflocs), showing more homogeneous flake formation, antimicrobial activity against the tested pathogens and greater biological diversity in the systems. The bacteria used in these tests were able to optimize the formation of microbial aggregates, showing potential for application in cultivation systems, in order to obtain improvements in productivity

    Removal of glyphosate herbicide from water using biopolymer membranes

    No full text
    Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to treat a water sample contaminated with glyphosate. Biopolymer membranes therefore potentially offer a versatile method to eliminate agricultural chemicals from water supplies151353360CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçãosem informação2013/05135-1The authors are grateful for the financial support provided by the grant #2013/05135-1, São Paulo Research Foundation (FAPESP), CNPq, CAPES, and FUNDUNES
    corecore