20 research outputs found

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis

    TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides , localizes to a discrete region in the cytoplasm

    Full text link
    TlpC is encoded in the second chemotaxis operon of Rhodobacter sphaeroides . This protein shows some homology to membrane-spanning chemoreceptors of many bacterial species but, unlike these, is essential for R. sphaeroides chemotaxis to all compounds tested. Genomic replacement of tlpC with a C-terminal gfp fusion demonstrated that TlpC localized to a discrete cluster within the cytoplasm. Immunogold electron microscopy also showed that TlpC localized to a cytoplasmic electron-dense region. Correct TlpC–GFP localization depended on the downstream signalling proteins, CheW 3 , CheW 4 and CheA 2 , and was tightly linked to cell division. Newly divided cells contained a single cluster but, as the cell cycle progressed, a second cluster appeared close to the initial cluster. As elongation continued, these clusters moved apart so that, on septation, each daughter cell contained a single TlpC cluster. The data presented suggest that TlpC is either a cytoplasmic chemoreceptor responding to or integrating global signals of metabolic state or a novel and essential component of the chemotaxis signalling pathway. These data also suggest that clustering is essential for signalling and that a mechanism may exist for targeting and localizing proteins within the bacterial cytoplasm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75441/1/j.1365-2958.2002.03252.x.pd

    Evolution of response dynamics underlying bacterial chemotaxis

    Get PDF
    Š 2011 Soyer and Goldstein; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: The ability to predict the function and structure of complex molecular mechanisms underlying cellular behaviour is one of the main aims of systems biology. To achieve it, we need to understand the evolutionary routes leading to a specific response dynamics that can underlie a given function and how biophysical and environmental factors affect which route is taken. Here, we apply such an evolutionary approach to the bacterial chemotaxis pathway, which is documented to display considerable complexity and diversity.Results: We construct evolutionarily accessible response dynamics starting from a linear response to absolute levels of attractant, to those observed in current-day Escherichia coli. We explicitly consider bacterial movement as a two-state process composed of non-instantaneous tumbling and swimming modes. We find that a linear response to attractant results in significant chemotaxis when sensitivity to attractant is low and when time spent tumbling is large. More importantly, such linear response is optimal in a regime where signalling has low sensitivity. As sensitivity increases, an adaptive response as seen in Escherichia coli becomes optimal and leads to 'perfect' chemotaxis with a low tumbling time. We find that as tumbling time decreases and sensitivity increases, there exist a parameter regime where the chemotaxis performance of the linear and adaptive responses overlap, suggesting that evolution of chemotaxis responses might provide an example for the principle of functional change in structural continuity.Conclusions: Our findings explain several results from diverse bacteria and lead to testable predictions regarding chemotaxis responses evolved in bacteria living under different biophysical constraints and with specific motility machinery. Further, they shed light on the potential evolutionary paths for the evolution of complex behaviours from simpler ones in incremental fashion

    The roles of the multiple CheW and CheA homologues in chemotaxis and in chemoreceptor localization in Rhodobacter sphaeroides.

    No full text
    Rhodobacter sphaeroides has multiple homologues of most of the Escherichia coli chemotaxis genes, organized in two major operons and other, unlinked, loci. These include cheA1 and cheW1 (che Op1) and cheA2, cheW2 and cheW3 (che Op2). We have deleted each of these cheA and cheW homologues in-frame and examined the chemosensory behaviour of these strains on swarm plates and in tethered cell assays. In addition, we have examined the effect of these deletions on the polar localization of the chemoreceptor McpG. In E. coli, deletion of either cheA or cheW results in a non-chemotactic phenotype, and these strains also show no receptor clustering. Here, we demonstrate that CheW2 and CheA2 are required for the normal localization of McpG and for normal chemotactic responses under both aerobic and photoheterotrophic conditions. Under aerobic conditions, deletion of cheW3 has no significant effect on McpG localization and only has an effect on chemotaxis to shallow gradients in swarm plates. Under photoheterotrophic conditions, however, CheW3 is required for McpG localization and also for chemotaxis both on swarm plates and in the tethered cell assay. These phenotypes are not a direct result of delocalization of McpG, as this chemoreceptor does not mediate chemotaxis to any of the compounds tested and can therefore be considered a marker for general methyl-accepting chemotaxis protein (MCP) clustering. Thus, there is a correlation between the normal localization of McpG (and presumably other chemoreceptors) and chemotaxis. We propose a model in which the multiple different MCPs in R. sphaeroides are contained within a polar chemoreceptor cluster. Deletion of cheW2 and cheA2 under both aerobic and photoheterotrophic conditions, and cheW3 under photoheterotrophic conditions, disrupts the cluster and hence reduces chemotaxis to any compound sensed by these MCPs

    Identification and localization of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides

    No full text
    Genes coding for a classical membrane spanning chemoreceptor (mcpG) and a response regulator (cheY4) were identified in a region of Rhodobacter sphaeroides DNA unlinked to either of the two previously identified chemosensory operons. Immunogold electron microscopy had shown that the expression of chemoreceptors in R. sphaeroides varies with growth conditions. Using GFP fused to the newly identified McpG, we examined the targeting of this single methyl-accepting chemotaxis protein (MCP) under different growth conditions. The gene encoding the C-terminal McpG-GFP fusion was introduced by homologous recombination into the chromosome, replacing the wild-type gene. The resultant protein localized to the poles of the cell under aerobic, photoheterotrophic and anaerobic dark conditions, demonstrating that this MCP is expressed under all three growth conditions. More protein was always found at one pole than the other. The polar fluorescence increased during the cell cycle, with protein becoming evident at the second pole around the time of septation. At division, each daughter cell had a label at one pole, but the intensity of fluorescence was higher in the daughter cell containing the original labelled pole. McpG localization was not altered in a che Operon 1 deletion strain, lacking CheW1 and CheA1, but a che Operon 2 deletion strain, lacking CheW2, CheW3 and CheA2, showed significantly reduced polar localization. This observation indicates that polar localization of McpG depends on Che proteins encoded by Operon 2, but not homologues encoded by Operon 1.
    corecore