590 research outputs found

    Designing rigid carbon foams

    Full text link
    We use ab initio density functional calculations to study the stability, elastic properties and electronic structure of sp2 carbon minimal surfaces with negative Gaussian curvature, called schwarzites. We focus on two systems with cubic unit cells containing 152 and 200 carbon atoms, which are metallic and very rigid. The porous schwarzite structure allows for efficient and reversible doping by electron donors and acceptors, making it a promising candidate for the next generation of alkali ion batteries. We identify schwarzite structures that act as arrays of interconnected quantum spin dots or become magnetic when doped. We introduce two interpenetrating schwarzite structures that may find their use as the ultimate super-capacitor.Comment: 6 pages, 5 figure

    Exploring Zeptosecond Quantum Equilibration Dynamics: From Deep-Inelastic to Fusion-Fission Outcomes in 58^{58}Ni+60^{60}Ni Reactions

    Get PDF
    Energy dissipative processes play a key role in how quantum many-body systems dynamically evolve towards equilibrium. In closed quantum systems, such processes are attributed to the transfer of energy from collective motion to single-particle degrees of freedom; however, the quantum many-body dynamics of this evolutionary process are poorly understood. To explore energy dissipative phenomena and equilibration dynamics in one such system, an experimental investigation of deep-inelastic and fusion-fission outcomes in the 58^{58}Ni+60^{60}Ni reaction has been carried out. Experimental outcomes have been compared to theoretical predictions using Time Dependent Hartree Fock and Time Dependent Random Phase Approximation approaches, which respectively incorporate one-body energy dissipation and fluctuations. Excellent quantitative agreement has been found between experiment and calculations, indicating that microscopic models incorporating one-body dissipation and fluctuations provide a potential tool for exploring dissipation in low-energy heavy ion collisions.Comment: 11 pages, 9 figures, 1 table, including Supplemental Material - Version accepted for publication in Physical Review Letter

    Hepatocytes infected with hepatitis C virus change immunological features in the liver microenvironment

    Get PDF
    Hepatitis C virus (HCV) infection is remarkably efficient in establishing viral persistence, leading to the development of liver cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antiviral agents (DAAs) are promising HCV therapies to clear the virus. However, recent reports indicate potential increased risk of HCC development among HCV patients with cirrhosis following DAA therapy. CD8+ T-cells participate in controlling HCV infection. However, in chronic hepatitis C patients, severe CD4+ and CD8+ T-cell dysfunctions have been observed. This suggests that HCV may employ mechanisms to counteract or suppress the host T-cell responses. The primary site of viral replication is within hepatocytes where infection can trigger the expression of costimulatory molecules and the secretion of immunoregulatory cytokines. Numerous studies indicate that HCV infection in hepatocytes impairs antiviral host immunity by modulating the expression of immunoregulatory molecules. Hepatocytes expressing whole HCV proteins upregulate the ligands of programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and transforming growth factor β (TGF-β) synthesis compared to those in hepatocytes in the absence of the HCV genome. Importantly, HCV-infected hepatocytes are capable of inducing regulatory CD4+ T-cells, releasing exosomes displaying TGF-β on exosome surfaces, and generating follicular regulatory T-cells. Recent studies report that the expression profile of exosome microRNAs provides biomarkers of HCV infection and HCV-related chronic liver diseases. A better understanding of the immunoregulatory mechanisms and identification of biomarkers associated with HCV infection will provide insight into designing vaccine against HCV to bypass HCV-induced immune dysregulation and prevent development of HCV-associated chronic liver diseases

    Reduced quasifission competition in fusion reactions forming neutron-rich heavy elements

    Get PDF
    Measurements of mass-angle distributions (MADs) for Cr + W reactions, providing a wide range in the neutron-to-proton ratio of the compound system, (N/Z)CN, have allowed for the dependence of quasifission on the (N/Z)CN to be determined in a model-independent way. Previous experimental and theoretical studies had produced conflicting conclusions. The experimental MADs reveal an increase in contact time and mass evolution of the quasifission fragments with increasing (N/Z)CN, which is indicative of an increase in the fusion probability. The experimental results are in agreement with microscopic time-dependent Hartree-Fock calculations of the quasifission process. The experimental and theoretical results favor the use of the most neutron-rich projectiles and targets for the production of heavy and superheavy nuclei.Comment: Accepted to PRC as a Rapid Communicatio

    A phase II study of S-1 monotherapy administered for 2 weeks of a 3-week cycle in advanced gastric cancer patients with poor performance status

    Get PDF
    Systemic chemotherapy for gastric cancer is often associated with treatment-related toxicity, which is particularly severe in patients with a poor performance status. In this paper, we describe the first study to evaluate S-1 monotherapy as an option for advanced gastric cancer patients who are not candidates for combination chemotherapy due to poor clinical condition. Fifty-two patients with Eastern Cooperative Oncology Group (ECOG) performance scale 2–3, whose general condition had made use of combination chemotherapy impossible, were enrolled. S-1 was administered to 30 patients as second- or third-line therapy. The initial dose of S-1 was 35 mg m−2, administered b.i.d for 14 days every 3 weeks. With a median follow-up period of 33 weeks, the median progression-free survival, and overall survival were 11 weeks (95% CI, 8–14) and 33 weeks (95% CI, 19–47), respectively. The overall 1-year survival rate was 29% by intent-to-treat analysis. The overall response rate was 12% (95% CI, 3–21), and the percentage of stable disease was 35%, resulting in the disease control rate of 47% (95% CI, 32–60). Significant drug-related toxicity included grade 3 diarrhoea (14%), anorexia (14%), fatigue (10%), neutropenia (10%), and leucopenia (6%). In conclusion, this study indicated the modest activity of S-1 in gastric cancer patients with poor performance status

    Limit on suppression of ionization in metastable neon traps due to long-range anisotropy

    Get PDF
    This paper investigates the possibility of suppressing the ionization rate in a magnetostatic trap of metastable neon atoms by spin-polarizing the atoms. Suppression of the ionization is critical for the possibility of reaching Bose-Einstein condensation with such atoms. We estimate the relevant long-range interactions for the system, consisting of electric quadrupole-quadrupole and dipole-induced dipole terms, and develop short-range potentials based on the Na_2 singlet and triplet potentials. The auto-ionization widths of the system are also calculated. With these ingredients we calculate the ionization rate for spin-polarized and for spin-isotropic samples, caused by anisotropy of the long-range interactions. We find that spin-polarization may allow for four orders of magnitude suppression of the ionization rate for Ne. The results depend sensitively on a precise knowledge of the interaction potentials, however, pointing out the need for experimental input. The same model gives a suppression ratio close to unity for metastable xenon in accordance with experimental results, due to a much increased anisotropy in this case.Comment: 15 pages including figures, LaTex/RevTex, uses epsfig.st

    Theoretical studies on space debris recycling and energy conversion system in the International Space Station

    Get PDF
    The space debris management and alleviation in the microgravity environment is a dynamic research theme of contemporary interest. Herein, we provide a theoretical proof of the concept of a lucrative energy conversion system that is capable of changing the space debris into useful powders in the International Space Station (ISS) for various bids. A specially designed broom is adapted to collect the space debris of various sizes. An optical sorting method is proposed for the debris segregation in the ISS by creating an artificial gravitational field. It could be done by using the frame-dragging effect or gravitomagnetism. An induction furnace is facilitated for converting the segregated metal-scrap into liquid metal. A fuel-cell aided water atomization method is proposed for transforming the liquid debris into metal powder. The high-energetic metal powders obtained from the space debris could be employed for producing propellants for useful aerospace applications, and the silicon powder obtained could be used for making soil for fostering the pharmaceutical-flora in the space lab in the future aiming for the scarce-drug discoveries for high-endurance health care management. The proposed energy conversion system is a possible alternative for the space debris extenuation and its real applications in orbiting laboratories through the international collaboration for the benefits to humanity
    corecore