206 research outputs found

    Evidence of disturbed sleep and mood state in well-trained athletes during short-term intensified training with and without a high carbohydrate nutritional intervention

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Sports Sciences on 25th September 2015, available online: http://www.tandfonline.com/10.1080/02640414.2015.1085589.Few studies have investigated the effects of exercise training on sleep physiology in well-trained athletes. We investigated changes in sleep markers, mood state and exercise performance in well-trained cyclists undergoing short-term intensified training and carbohydrate nutritional intervention. Thirteen highly-trained male cyclists (age: 25 ± 6y, (Formula presented.)O2max: 72 ± 5 ml/kg/min) participated in two 9-day periods of intensified training while undergoing a high (HCHO) or moderate (CON) carbohydrate nutritional intervention before, during and after training sessions. Sleep was measured each night via wristwatch actigraphy. Mood state questionnaires were completed daily. Performance was assessed with maximal oxygen uptake ((Formula presented.). Percentage sleep time fell during intensified training (87.9 ± 1.5 to 82.5 ± 2.3%; p < 0.05) despite an increase in time in bed (456 ± 50 to 509 ± 48 min; p = 0.02). Sleep efficiency decreased during intensified training (83.1 ± 5.3 to 77.8 ± 8.6%; p < 0.05). Actual sleep time was significantly higher in CON than HCHO throughout intensified training. Mood disturbance increased during intensified training and was higher in CON than HCHO (p < 0.05). Performance in the (Formula presented.) exercise protocol fell significantly with intensified training. The main findings of this study were that 9-days of intensified training in highly-trained cyclists resulted in significant and progressive declines in sleep quality, mood state and maximal exercise performance

    Effect of Mouth Rinsing and Ingestion of Carbohydrate Solutions on Mood and Perceptual Responses During Exercise

    Get PDF
    Background: The aim of this study was to investigate whether mouth rinsing or ingesting carbohydrate (CHO) solutions impact on perceptual responses during exercise. Methods: Nine moderately trained male cyclists underwent a 90-min glycogen-reducing exercise, and consumed a low CHO meal, prior to completing an overnight fast. A 1-h cycle time trial was performed the following morning. Four trials, each separated by 7days, were conducted in a randomized, counterbalanced study design: 15% CHO mouth rinse (CHOR), 7.5% CHO ingestion (CHOI), placebo mouth rinse (PLAR) and placebo ingestion (PLAI). Solution volumes (1.5ml·g-1 ingestion trials and 0.33ml·kg-1 rinsing trials) were provided after every 12.5% of completed exercise. Perceptual scales were used to assess affective valence (feeling scale, FS), arousal (felt arousal scale, FAS), exertion (ratings of perceived exertion, RPE) and mood (profile of mood states, POMS) before, during and immediately after exercise. Results: There was no difference in RPE (CHOI, 14.0±9; CHOR, 14.2±.7; PLAI, 14.6±1.8; PLAR, 14.6±2.0; P=0.35), FS (CHOI, 0.0±1.7; CHOR, -0.2±1.5; PLAI, -0.8±1.4; PLAR, -0.8±1.6; P0.15), or FAS (CHOI, 3.6±1.1; CHOR, 3.5±1.0; PLAI, 3.4±1.4; PLAR, 3.3±1.3; P=725) scores between trials. While overall POMS score did not appear to differ between trials, the 'vigour' subscale indicated that CHOI may facilitate the maintenance of 'vigour' scores over time, in comparison to the steady decline witnessed in other trials (P=0.04). There was no difference in time trial performance between trials (CHOI, 65.3±4.8min; CHOR, 68.4±3.9min; PLAI, 68.7±5.3min; PLAR, 68.3±5.2min; P=0.21) but power output was higher in CHOI (231.0±33.2 W) relative to other trials (221-223.6 W; Plt0.01). Conclusions: In a CHO-reduced state, mouth rinsing with a CHO solution did not impact on perceptual responses during high-intensity exercise in trained cyclists and triathletes. On the other hand CHO ingestion improved perceived ratings of vigour and increased power output during exercise

    Nutrition Strategies for Triathlon

    Get PDF
    Contemporary sports nutrition guidelines recommend that each athlete develop a personalised, periodised and practical approach to eating that allows him or her to train hard, recover and adapt optimally, stay free of illness and injury and compete at their best at peak races. Competitive triathletes undertake a heavy training programme to prepare for three different sports while undertaking races varying in duration from 20 min to 10 h. The everyday diet should be adequate in energy availability, provide CHO in varying amounts and timing around workouts according to the benefits of training with low or high CHO availability and spread high-quality protein over the day to maximise the adaptive response to each session. Race nutrition requires a targeted and well-practised plan that maintains fuel and hydration goals over the duration of the specific event, according to the opportunities provided by the race and other challenges, such as a hot environment. Supplements and sports foods can make a small contribution to a sports nutrition plan, when medical supplements are used under supervision to prevent/treat nutrient deficiencies (e.g. iron or vitamin D) or when sports foods provide a convenient source of nutrients when it is impractical to eat whole foods. Finally, a few evidence-based performance supplements may contribute to optimal race performance when used according to best practice protocols to suit the triathlete’s goals and individual responsiveness

    Food-dependent, exercise-induced gastrointestinal distress

    Get PDF
    Among athletes strenuous exercise, dehydration and gastric emptying (GE) delay are the main causes of gastrointestinal (GI) complaints, whereas gut ischemia is the main cause of their nausea, vomiting, abdominal pain and (blood) diarrhea. Additionally any factor that limits sweat evaporation, such as a hot and humid environment and/or body dehydration, has profound effects on muscle glycogen depletion and risk for heat illness. A serious underperfusion of the gut often leads to mucosal damage and enhanced permeability so as to hide blood loss, microbiota invasion (or endotoxemia) and food-born allergen absorption (with anaphylaxis). The goal of exercise rehydration is to intake more fluid orally than what is being lost in sweat. Sports drinks provide the addition of sodium and carbohydrates to assist with intestinal absorption of water and muscle-glycogen replenishment, respectively. However GE is proportionally slowed by carbohydrate-rich (hyperosmolar) solutions. On the other hand, in order to prevent hyponatremia, avoiding overhydration is recommended. Caregiver's responsibility would be to inform athletes about potential dangers of drinking too much water and also advise them to refrain from using hypertonic fluid replacements

    Evaluation of the nutrition knowledge of sports department students of universities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals who have knowledge on the importance of adequate and balanced diet and reflect this knowledge to their behaviors are considered to be more successful in sports life. The present study aims to evaluate the nutrition knowledge of students receiving sports education in universities.</p> <p>Methods</p> <p>The study sample consists of 343 voluntary students from the Sports Departments of Hacettepe, Gazi and Ankara Universities in Ankara. The questionnaire used in the study included a demographic section, and 30 questions on true-false nutrition knowledge. For the reliability of the questionnaire, the internal consistency coefficient was calculated and the Kuder Richardson (KR-20) value was found to be 0.71. For higher reliability, 9 dysfunctional questions were excluded from the questionnaire. The research data were collected through a questionnaire form and face-to-face interviews. For the statistical analyses of the data, tables were prepared to show mean, standard deviation (<inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1550-2783-8-11-i1"><m:mover accent="true"><m:mrow><m:mi>X</m:mi></m:mrow><m:mo class="MathClass-op">̄</m:mo></m:mover><m:mo class="MathClass-bin">±</m:mo><m:mi>S</m:mi><m:mi>D</m:mi></m:math></inline-formula>) and percentage (%) values. In order to determine the nutrition knowledge of students, the "independent t test" was used for nutrition lesson and gender.</p> <p>Results</p> <p>University students receiving sports education and expected to continue their professional lives on sport-related fields were determined to have the lack of knowledge on nutrition. The mean value about the nutrition knowledge of the first year students was found 11.150 ± 2.962, while the mean value of the fourth year students was 13.460 ± 3.703, and the difference is statistically significant (p = .000).</p> <p>Conclusion</p> <p>Students, coaches and teachers in physical education were found not to give the necessary importance to their diets, and they were still not aware of the importance of nutrition on performance.</p

    New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females.

    Get PDF
    PURPOSE: New Zealand blackcurrant (NZBC) extract has previously been shown to increase fat oxidation during prolonged exercise, but this observation is limited to males. We examined whether NZBC intake also increases fat oxidation during prolonged exercise in females, and whether this was related to greater concentrations of circulating fatty acids. METHODS: In a randomised, crossover, double-blind design, 16 endurance-trained females (age: 28 ± 8 years, BMI: 21.3 ± 2.1 kg·m-2, VO2max: 43.7 ± 1.1 ml·kg-1·min-1) ingested 600 mg·day-1NZBC extract (CurraNZ™) or placebo (600 mg·day-1microcrystalline cellulose) for 7 days. On day 7, participants performed 120 min cycling at 65% VO2max, using online expired air sampling with blood samples collected at baseline and at 15 min intervals throughout exercise for analysis of glucose, NEFA and glycerol. RESULTS: NZBC extract increased mean fat oxidation by 27% during 120 min moderate-intensity cycling compared to placebo (P = 0.042), and mean carbohydrate oxidation tended to be lower (P = 0.063). Pre-exercise, plasma NEFA (P = 0.034) and glycerol (P = 0.051) concentrations were greater following NZBC intake, although there was no difference between conditions in the exercise-induced increase in plasma NEFA and glycerol concentrations (P > 0.05). Mean fat oxidation during exercise was moderately associated with pre-exercise plasma NEFA concentrations (r = 0.45, P = 0.016). CONCLUSIONS: Intake of NZBC extract for 7 days elevated resting concentrations of plasma NEFA and glycerol, indicative of higher lipolytic rates, and this may underpin the observed increase in fat oxidation during prolonged cycling in endurance-trained females

    Proposal of a Nutritional Quality Index (NQI) to Evaluate the Nutritional Supplementation of Sportspeople

    Get PDF
    Background: Numerous supplements are used by sportspeople. They are not always appropriate for the individual or the sports activity and may do more harm than good. Vitamin and mineral supplements are unnecessary if the energy intake is sufficient to maintain body weight and derives from a diet with an adequate variety of foods. The study objectives were to evaluate the main nutrients used as supplements in sports and to propose a nutritional quality index (NQI) that enables sportspeople to optimize their use of supplements and detect and remedy possible nutritional deficits. Material and Methods: A nutritional study was performed in 485 sportspeople recruited from Centros Andaluces de Medicina del Deporte, (CAMD). All completed socio-demographic, food frequency, and lifestyle questionnaires. The nutritional quality of their diet and need for supplementation were evaluated by scoring their dietary intake with and without supplementation, yielding two NQI scores (scales of 0-21 points) for each participant. Results: A superior mean NQI score was obtained when the supplements taken by participants were not included (16. 28 (SD of 3.52)) than when they were included (15.47 (SD: 3.08)), attributable to an excessive intake of some nutrients through supplementation. Conclusions: These results indicate that sportspeople with a varied and balanced diet do not need supplements, which appear to offer no performance benefits and may pose a health risk.The authors are grateful to the Junta de Andalucía, Spain (Research Group AGR-255“Nutrition. Diet and Risk Assessment”), a collaboration agreement with the Andalusian Centres of Sports Medicine (Junta de Andalucía) and the FPU program of the Spanish Ministry of Education and Science. Study participants were recruited through the project “Nutritional and diet assessment methodologies applied to the Andalusian sportsperson in Andalusian Sports centres”, Research project FMD2010SC0071 of the Junta de Andalucía

    Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches

    Get PDF
    Specific guidelines that aim to facilitate the recovery of soccer players from the demands of training and a congested fixture schedule are lacking; especially in relation to evidence-based nutritional recommendations. The importance of repeated high level performance and injury avoidance while addressing the challenges of fixture scheduling, travel to away venues, and training commitments requires a strategic and practically feasible method of implementing specific nutritional strategies. Here we present evidence-based guidelines regarding nutritional recovery strategies within the context of soccer. An emphasis is placed on providing practically applicable guidelines for facilitation of recovery when multiple matches are played within a short period of time (i.e. 48 h). Following match-play, the restoration of liver and muscle glycogen stores (via consumption of ~1.2 gkg-1h-1 of carbohydrate) and augmentation of protein synthesis (via ~40 g of protein) should be prioritised in the first 20 minutes of recovery. Daily intakes of 6-10 gkg-1 body mass of carbohydrate are recommended when limited time separates repeated matches while daily protein intakes of >1.5 gkg-1 body mass should be targeted; possibly in the form of multiple smaller feedings (e.g., 6 x 20-40 g). At least 150% of the body mass lost during exercise should be consumed within 1 h and electrolytes added such that fluid losses are ameliorated. Strategic use of protein, leucine, creatine, polyphenols and omega-3 supplements could also offer practical means of enhancing post-match recovery. Keywords: soccer, nutrition, recovery, polyphenols, omega-3, creatine, fixture, congestio

    No effect of glutamine supplementation and hyperoxia on oxidative metabolism and performance during high-intensity exercise.

    Get PDF
    addresses: Health and Biology, Liverpool Hope University, Liverpool, UK. [email protected]: Comparative Study; Journal ArticleThis is an Author's Accepted Manuscript of an article published in Journal of Sports Sciences, 2008, Vol. 26, Issue 10, pp. 1081 – 1090 © 2008 copyright Taylor & Francis, available online at: http://www.tandfonline.com/doi/abs/10.1080/02640410801930200Glutamine enhances the exercise-induced expansion of the tricarboxylic acid intermediate pool. The aim of the present study was to determine whether oral glutamine, alone or in combination with hyperoxia, influenced oxidative metabolism and cycle time-trial performance. Eight participants consumed either placebo or 0.125 g kg body mass(-1) of glutamine in 5 ml kg body mass(-1) placebo 1 h before exercise in normoxic (control and glutamine respectively) or hyperoxic (FiO(2) = 50%; hyperoxia and hyperoxia + glutamine respectively) conditions. Participants then cycled for 6 min at 70% maximal oxygen uptake (VO(2max)) immediately before completing a brief high-intensity time-trial (approximately 4 min) during which a pre-determined volume of work was completed as fast as possible. The increment in pulmonary oxygen uptake during the performance test (DeltaVO(2max), P = 0.02) and exercise performance (control: 243 s, s(x) = 7; glutamine: 242 s, s(x) = 3; hyperoxia: 231 s, s(x) = 3; hyperoxia + glutamine: 228 s, s(x) = 5; P < 0.01) were significantly improved in hyperoxic conditions. There was some evidence that glutamine ingestion increased DeltaVO(2max) in normoxia, but not hyperoxia (interaction drink/FiO(2), P = 0.04), but there was no main effect or impact on performance. Overall, the data show no effect of glutamine ingestion either alone or in combination with hyperoxia, and thus no limiting effect of the tricarboxylic acid intermediate pool size, on oxidative metabolism and performance during maximal exercise
    corecore