312 research outputs found

    Shedding New Light on the 3C 273 Jet with the Spitzer Space Telescope

    Get PDF
    We have performed infrared imaging of the jet of the quasar 3C 273 at wavelengths 3.6 and 5.8 microns with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. When combined with the radio, optical and X-ray measurements, the IRAC photometry clearly shows that the optical emission is dominated by the high-energy component of the jet, not by the radio synchrotron component, as had been assumed to date. The high-energy component may be due to a second synchrotron component or to IC scattering of ambient photons. In the former case, we argue that the acceleration of protons exceeding 10^16 eV or possibly even to 10^19 eV would be taking place in the jet. In contrast, the IC model, into which highly relativistic Doppler beaming has to be incorporated, requires very low-energy electrons (~ 1 MeV). The present polarization data in the radio and optical would favor the former interpretation in the case of the 3C 273 jet. Sensitive and detailed measurements of optical polarization are important to establish the radiation mechanism responsible for the high-energy emission. The present study offers new clues as to the controversial origin of the X-ray emission seen in many quasar jets.Comment: 12 pages, 8 figures (2 color figures), accepted for publication in ApJ, color images are also available at http://www.astro.isas.jaxa.jp/~uchiyama/Site2/Spitzer_3C273.htm

    Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars

    Get PDF
    We present an analysis of the mid-infrared (MIR) and optical properties of type 1 (broad-line) quasars detected by the Spitzer Space Telescope. The MIR color-redshift relation is characterized to z ~ 3, with predictions to z = 7. We demonstrate how combining MIR and optical colors can yield even more efficient selection of active galactic nuclei (AGNs) than MIR or optical colors alone. Composite spectral energy distributions (SEDs) are constructed for 259 quasars with both Sloan Digital Sky Survey and Spitzer photometry, supplemented by near-IR, GALEX, VLA, and ROSAT data, where available. We discuss how the spectral diversity of quasars influences the determination of bolometric luminosities and accretion rates; assuming the mean SED can lead to errors as large as 50% for individual quasars when inferring a bolometric luminosity from an optical luminosity. Finally, we show that careful consideration of the shape of the mean quasar SED and its redshift dependence leads to a lower estimate of the fraction of reddened/obscured AGNs missed by optical surveys as compared to estimates derived from a single mean MIR to optical flux ratio

    Optical detection of the Pictor A jet and tidal tail : evidence against an IC/CMB jet

    Get PDF
    Date of Acceptance: 12/06/2015New images of the FR II radio galaxy Pictor A from the Hubble Space Telescope reveal a previously undiscovered tidal tail, as well as a number of jet knots coinciding with a known X-ray and radio jet. The tidal tail is approximately 5″ wide (3 kpc projected), starting 18″ (12 kpc) from the center of Pictor A, and extends more than 90″ (60 kpc). The knots are part of a jet observed to be about 4′ (160 kpc) long, extending to a bright hotspot. These images are the first optical detections of this jet, and by extracting knot flux densities through three filters, we set constraints on emission models. While the radio and optical flux densities are usually explained by synchrotron emission, there are several emission mechanisms that might be used to explain the X-ray flux densities. Our data rule out Doppler-boosted inverse Compton scattering as a source of the high-energy emission. Instead, we find that the observed emission can be well described by synchrotron emission from electrons with a low-energy index (p ∼ 2) that dominates the radio band, while a high-energy index (p ∼ 3) is needed for the X-ray band and the transition occurs in the optical/infrared band. This model is consistent with a continuous electron injection scenario.Peer reviewedFinal Accepted Versio

    The Factory and The Beehive II. Activity and Rotation in Praesepe and the Hyades

    Get PDF
    Open clusters are collections of stars with a single, well-determined age, and can be used to investigate the connections between angular-momentum evolution and magnetic activity over a star's lifetime. We present the results of a comparative study of the relationship between stellar rotation and activity in two benchmark open clusters: Praesepe and the Hyades. As they have the same age and roughly solar metallicity, these clusters serve as an ideal laboratory for testing the agreement between theoretical and empirical rotation-activity relations at \approx600 Myr. We have compiled a sample of 720 spectra --- more than half of which are new observations --- for 516 high-confidence members of Praesepe; we have also obtained 139 new spectra for 130 high-confidence Hyads. We have collected rotation periods (ProtP_{rot}) for 135 Praesepe members and 87 Hyads. To compare HαH\alpha emission, an indicator of chromospheric activity, as a function of color, mass, and Rossby number RoR_o, we first calculate an expanded set of χ\chi values, with which we can obtain the HαH\alpha to bolometric luminosity ratio, LHα/LbolL_{H\alpha}/L_{bol}, even when spectra are not flux-calibrated and/or stars lack reliable distances. Our χ\chi values cover a broader range of stellar masses and colors (roughly equivalent to spectral types from K0 to M9), and exhibit better agreement between independent calculations, than existing values. We find no difference between the two clusters in their HαH\alpha equivalent width or LHα/LbolL_{H\alpha}/L_{bol} distributions, and therefore take the merged HαH\alpha and ProtP_{rot} data to be representative of 600-Myr-old stars. Our analysis shows that HαH\alpha activity in these stars is saturated for Ro0.110.03+0.02R_o\leq0.11^{+0.02}_{-0.03}. Above that value activity declines as a power-law with slope β=0.730.12+0.16\beta=-0.73^{+0.16}_{-0.12}, before dropping off rapidly at Ro0.4R_o\approx0.4...Comment: 17 pages, 15 figures, Accepted by Ap

    The effect of chair massage on muscular discomfort in cardiac sonographers: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac sonographers frequently have work-related muscular discomfort. We aimed to assess the feasibility of having sonographers receive massages during working hours in an area adjacent to an echocardiography laboratory and to assess relief of discomfort with use of the massages with or without stretching exercises.</p> <p>Methods</p> <p>A group of 45 full-time sonographers was randomly assigned to receive weekly 30-minute massage sessions, massages plus stretching exercises to be performed twice a day, or no intervention. Outcome measures were scores of the <it>Quick</it>DASH instrument and its associated work module at baseline and at 10 weeks of intervention. Data were analyzed with standard descriptive statistics and the separation test for early-phase comparative trials.</p> <p>Results</p> <p>Forty-four participants completed the study: 15 in the control group, 14 in the massage group, and 15 in the massage plus stretches group. Some improvement was seen in work-related discomfort by the <it>Quick</it>DASH scores and work module scores in the 2 intervention groups. The separation test showed separation in favor of the 2 interventions.</p> <p>Conclusion</p> <p>On the basis of the results of this pilot study, larger trials are warranted to evaluate the effect of massages with or without stretching on work-related discomfort in cardiac sonographers.</p> <p>Trial Registration</p> <p>NCT00975026 ClinicalTrials.gov</p

    The First Swift Ultra-Violet/Optical Telescope GRB Afterglow Catalog

    Full text link
    We present the first Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog. The catalog contains data from over 64,000 independent UVOT image observations of 229 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), and the Interplanetary Network (IPN). The catalog covers GRBs occurring during the period from 2005 Jan 17 to 2007 Jun 16 and includes ~86% of the bursts detected by the Swift Burst Alert Telescope (BAT). The catalog provides detailed burst positional, temporal, and photometric information extracted from each of the UVOT images. Positions for bursts detected at the 3-sigma-level are provided with a nominal accuracy, relative to the USNO-B1 catalog, of ~0.25 arcseconds. Photometry for each burst is given in three UV bands, three optical bands, and a 'white' or open filter. Upper limits for magnitudes are reported for sources detected below 3-sigma. General properties of the burst sample and light curves, including the filter-dependent temporal slopes, are also provided. The majority of the UVOT light curves, for bursts detected at the 3-sigma-level, can be fit by a single power-law, with a median temporal slope (alpha) of 0.96, beginning several hundred seconds after the burst trigger and ending at ~1x10^5 s. The median UVOT v-band (~5500 Angstroms) magnitude at 2000 s for a sample of "well" detected bursts is 18.02. The UVOT flux interpolated to 2000 s after the burst, shows relatively strong correlations with both the prompt Swift BAT fluence, and the Swift X-ray flux at 11 hours after the trigger.Comment: 60 pages, 17 figures, 8 tables, accepted for publication by the Astrophysical Journa

    Various checkpoints prevent the synthesis of Staphylococcus aureus peptidoglycan hydrolase LytM in the stationary growth phase.

    Get PDF
    In Staphylococcus aureus, peptidoglycan metabolism plays a role in the host inflammatory response and pathogenesis. Transcription of the peptidoglycan hydrolases is activated by the essential two-component system WalKR at low cell density. During stationary growth phase, WalKR is not active and transcription of the peptidoglycan hydrolase genes is repressed. In this work, we studied regulation of expression of the glycylglycine endopeptidase LytM. We show that, in addition to the transcriptional regulation mediated by WalKR, the synthesis of LytM is negatively controlled by a unique mechanism at the stationary growth phase. We have identified two different mRNAs encoding lytM, which vary in the length of their 5' untranslated (5'UTR) regions. LytM is predominantly produced from the WalKR-regulated mRNA transcript carrying a short 5'UTR. The lytM mRNA is also transcribed as part of a polycistronic operon with the upstream SA0264 gene and is constitutively expressed. Although SA0264 protein can be synthesized from the longer operon transcript, lytM cannot be translated because its ribosome-binding site is sequestered into a translationally inactive secondary structure. In addition, the effector of the agr system, RNAIII, can inhibit translation of lytM present on the operon without altering the transcript level but does not have an effect on the translation of the upstream gene. We propose that this dual regulation of lytM expression, at the transcriptional and post-transcriptional levels, contributes to prevent cell wall damage during the stationary phase of growth

    The Sloan Digital Sky Survey Quasar Catalog IV. Fifth Data Release

    Get PDF
    We present the fourth edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog contains 77,429 objects; this is an increase of over 30,000 entries since the previous edition. The catalog consists of the objects in the SDSS Fifth Data Release that have luminosities larger than M_i = -22.0 (in a cosmology with H_0 = 70 km/s/Mpc, Omega_M = 0.3, and Omega_Lambda = 0.7) have at least one emission line with FWHM larger than 1000 km/s, or have interesting/complex absorption features, are fainter than i=15.0, and have highly reliable redshifts. The area covered by the catalog is 5740 sq. deg. The quasar redshifts range from 0.08 to 5.41, with a median value of 1.48; the catalog includes 891 quasars at redshifts greater than four, of which 36 are at redshifts greater than five. Approximately half of the catalog quasars have i < 19; nearly all have i < 21. For each object the catalog presents positions accurate to better than 0.2 arcsec. rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains basic radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800--9200A at a spectral resolution of ~2000. The spectra can be retrieved from the public database using the information provided in the catalog. The average SDSS colors of quasars as a function of redshift, derived from the catalog entries, are presented in tabular form. Approximately 96% of the objects in the catalog were discovered by the SDSS.Comment: 37 pages, Accepted for publication in A

    Astrometric Redshifts for Quasars

    Full text link
    The wavelength dependence of atmospheric refraction causes differential chromatic refraction (DCR), whereby objects imaged at different optical/UV wavelengths are observed at slightly different positions in the plane of the detector. Strong spectral features induce changes in the effective wavelengths of broad-band filters that are capable of producing significant positional offsets with respect to standard DCR corrections. We examine such offsets for broad-emission-line (type 1) quasars from the Sloan Digital Sky Survey (SDSS) spanning 0<z<5 and an airmass range of 1.0 to 1.8. These offsets are in good agreement with those predicted by convolving a composite quasar spectrum with the SDSS bandpasses as a function of redshift and airmass. This astrometric information can be used to break degeneracies in photometric redshifts of quasars (or other emission-line sources) and, for extreme cases, may be suitable for determining "astrometric redshifts". On the SDSS's southern equatorial stripe, where it is possible to average many multi-epoch measurements, more than 60% of quasars have emission-line-induced astrometric offsets larger than the SDSS's relative astrometric errors of 25-35 mas. Folding these astrometric offsets into photometric redshift estimates yields an improvement of 9% within Delta z+/-0.1. Future multi-epoch synoptic surveys such as LSST and Pan-STARRS could benefit from intentionally making ~10 observations at relatively high airmass (AM~1.4) in order to improve their photometric redshifts for quasars.Comment: 29 pages, 13 figures (3 color); AJ, accepte
    corecore