787 research outputs found

    Statistics of surface divergence and their relation to air-water gas transfer velocity

    Get PDF
    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence

    New directions for lifelong learning using network technologies

    Get PDF
    Please refer only to original source: Koper, R., Tattersall, C. (2004). New directions for lifelong learning using network technologies. British Journal of Educational Technology, 35 (6), 689-700.The requirements placed on learning technologies to support lifelong learning differ considerably from those placed on technologies to support particular fragments of a learning lifetime. The time scales involved in lifelong learning, together with its multi-institutional and episodic nature are not reflected in today’s mainstream learning technologies and their associated architectures. The article presents an integrated model and architecture to serve as the basis for the realization of networked learning technologies serving the specific needs and characteristics of lifelong learners. The integrative model is called a “Learning Network” (LN) and its requirements and architecture are explored, together with the ways in which its application can help in reducing barriers to lifelong learning

    Models of the SL9 Impacts II. Radiative-hydrodynamic Modeling of the Plume Splashback

    Full text link
    We model the plume "splashback" phase of the SL9 collisions with Jupiter using the ZEUS-3D hydrodynamic code. We modified the Zeus code to include gray radiative transport, and we present validation tests. We couple the infalling mass and momentum fluxes of SL9 plume material (from paper I) to a jovian atmospheric model. A strong and complex shock structure results. The modeled shock temperatures agree well with observations, and the structure and evolution of the modeled shocks account for the appearance of high excitation molecular line emission after the peak of the continuum light curve. The splashback region cools by radial expansion as well as by radiation. The morphology of our synthetic continuum light curves agree with observations over a broad wavelength range (0.9 to 12 microns). A feature of our ballistic plume is a shell of mass at the highest velocities, which we term the "vanguard". Portions of the vanguard ejected on shallow trajectories produce a lateral shock front, whose initial expansion accounts for the "third precursors" seen in the 2-micron light curves of the larger impacts, and for hot methane emission at early times. Continued propagation of this lateral shock approximately reproduces the radii, propagation speed, and centroid positions of the large rings observed at 3-4 microns by McGregor et al. The portion of the vanguard ejected closer to the vertical falls back with high z-component velocities just after maximum light, producing CO emission and the "flare" seen at 0.9 microns. The model also produces secondary maxima ("bounces") whose amplitudes and periods are in agreement with observations.Comment: 13 pages, 9 figures (figs 3 and 4 in color), accepted for Ap.J. latex, version including full figures at: http://oobleck.tn.cornell.edu/jh/ast/papers/slplume2-20.ps.g

    Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S08, doi:10.1029/2003JC001800.The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of −4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.This material is based upon work supported by the NSF under grant OCE-9986724, and by NOAA/OGP grant GC00-226

    Impact of Scottish vocational qualifications on residential child care : have they fulfilled the promise?

    Get PDF
    This article will present findings from a doctoral study exploring the impact of 'SVQ Care: Promoting Independence (level III)' within children's homes. The study focuses on the extent to which SVQs enhance practice and their function within a 'learning society'. A total of 30 staff were selected from seven children's homes in two different local authority social work departments in Scotland. Each member of staff was interviewed on four separate occasions over a period of 9 months. Interviews were structured using a combination of repertory grids and questions. Particular focus was given to the assessment process, the extent to which SVQs enhance practice and the learning experiences of staff. The findings suggest that there are considerable deficiencies both in terms of the SVQ format and the way in which children's homes are structured for the assessment of competence. Rather than address the history of failure within residential care, it appears that SVQs have enabled the status quo to be maintained whilst creating an 'illusion' of change within a learning society

    From salty to fresh—salinity processes in the Upper-ocean Regional Study-2 (SPURS-2) : diagnosing the physics of a rainfall-dominated salinity minimum

    Get PDF
    Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 1 (2015): 150-159, doi:10.5670/oceanog.2015.15.One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the global water cycle: the transport of water vapor by the trade winds across Central America and the lack of any comparable transport into the Atlantic from the Sahara Desert. Net evaporation serves to maintain high Atlantic salinities, and net precipitation lowers those in the Pacific. Because the effects on upper-ocean physics are markedly different in the evaporating and precipitating regimes, the next phase of research in the Salinity Processes in the Upper-ocean Regional Study (SPURS) must address a high rainfall region. It seemed especially appropriate to focus on the eastern tropical Pacific that is freshened by the water vapor carried from the Atlantic. In a sense, the SPURS-2 Pacific region will be looking at the downstream fate of the freshwater carried out of the SPURS-1 North Atlantic region. Rainfall tends to lower surface density and thus inhibit vertical mixing, leading to quite different physical structure and dynamics in the upper ocean. Here, we discuss the motivations for the location of SPURS-2 and the scientific questions we hope to address
    corecore