AN EFFICIENT BLOCK VARIANT OF GMRES

A. H. BAKER *, J. M. DENNIS f, AND E. R. JESSUP

Abstract. We present an alternative to the standard restarted GMRES algorithm for solving
a single right-hand side linear system Az = b based on solving the block linear system AX = B.
Additional starting vectors and right-hand sides are chosen to accelerate convergence. Algorithm
performance, i.e. time to solution, is improved by using the matrix A in operations on groups of
vectors, or “multivectors,” thereby reducing the movement of A through memory. The efficient
implementation of our method depends on a fast matrix-multivector multiply routine. We present
numerical results that show that the time to solution of the new method is up to two and half times
faster than that of restarted GMRES on preconditioned problems. We also demonstrate the impact
of implementation choices on data movement and, as a result, algorithm performance.

Key words. GMRES, block GMRES, iterative methods, Krylov subspace techniques, restart,
nonsymmetric linear systems, memory access costs

AMS subject classifications. 65F10, 65Y20

1. Introduction and motivation. A wide range of physical processes are de-
scribed by systems of linear and nonlinear partial differential equations (PDEs). Ex-
amples of such processes range from acoustic scattering [20] to structural analysis
[21] to fluid flow [1]. Approximating the solutions of these systems of PDEs typically
requires the solution of a large linear system, which frequently consumes a significant
portion of the total application time [52, 21]. For this reason, reducing the time of
the linear solve is of great interest.

Though the cost of a numerical linear algebra algorithm has traditionally been
measured in terms of the floating-point operations required, a more memory-centric
approach has long been advocated (e.g., see [24, 17, 33, 31]). It is well-known that
matrix algorithm performance continues to be limited by the gap between micropro-
cessor performance and memory access time (e.g., see [17, 59, 37, 35, 25, 1]). In
fact, the discrepancy between DRAM (dynamic random access memory) access time
and microprocessor speeds has increased by nearly 50% per year [46]. As a result,
the percentage of overall application time spent waiting for data from main memory
has increased [46]. The situation is compounded by advances in algorithm develop-
ment that have decreased the total number of floating-point operations required by
many algorithms [25]. Therefore, the number of floating-point operations required by
an algorithm is not necessarily an accurate predictor of algorithm performance for a
large matrix algebra problem [25]. In fact, performance bounds based on sustainable
memory bandwidth (such as the STREAM [36] benchmark) are thought to predict
algorithm performance most accurately [25, 1]. In particular, when solving a linear
system, efficient data reuse (i.e., reducing data movement) is crucial to reducing an
algorithm’s memory costs [33, 17, 24].

For these reasons, we are interested in the problem of achieving a balance between

*Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526,
(allison.baker@colorado.edu). The work of this author was supported by the Department of
Energy through a Computational Science Graduate Fellowship (DE-FG02-97ER25308).

tScientific Computing Division, National Center for Atmospheric Research, Boulder, CO 80307-
3000 (dennisQucar.edu). The work of this author was supported by the National Science Foundation.

tDepartment of Computer Science, University of Colorado, Boulder, CO 80309-0430
(jessup@cs.colorado.edu). The work of this author was supported by the National Science Foun-
dation under grant no. ACI-0072119.

2 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

improving the efficiency of a sparse linear solver from a memory-usage standpoint and
maintaining favorable numerical properties. Therefore, we investigate modifying a
standard linear solver algorithm such that data movement is reduced while preserving
accuracy and evaluate the impact of the changes on performance (time to solution).
In particular, we consider the solution of the linear system Az = b, where A is a
sparse, nonsymmetric square matrix, b is a single right-hand side, and x is a single
solution vector. We focus on the GMRES (generalized minimum residual) [51] method
because it is commonly used to solve large, sparse, nonsymmetric linear systems
resulting from partial differential equations. In this paper, we establish the feasibility
of improving the performance of the restarted GMRES algorithm, and likewise other
iterative solvers, via algorithmic changes that improve data reuse.

Many iterative methods such as GMRES, and Krylov methods in particular,
are based on an iteration loop that accesses the coefficient matrix A once per loop
and performs a matrix-vector multiply. To reduce data movement in the GMRES
algorithm, our approach is to modify the algorithm such that more than one matrix-
vector product occurs for a single memory access of A. To this end, we investigate an
alternative for solving a single right-hand side system based on solving a corresponding
block linear system AX = B, where X and B are both groups of vectors. In this work,
capital letters indicate matrices or groups of vectors (multivectors), and lower case
letters indicate single vectors. A block system allows multiple matrix-vector products
for a single memory access of A. However, to use a block system to solve a single right-
hand side system, we had to choose additional starting vectors and right-hand sides.
Ideally these additional vectors accelerate convergence to the solution. Inspiration
for such vectors came from the augmented Krylov subspace method LGMRES [3]. In
fact, the block algorithm that we present in this paper is a theoretical extension of
the LGMRES algorithm and has similarly appealing convergence properties.

Beyond the algorithmic modifications required for a block formulation of restarted
GMRES, close attention to implementation techniques is essential for a memory-
efficient, sparse linear solver. In our new block method, we reduce the cost of the
additional matrix-vector operations in each iteration loop via an innovative matrix-
multivector multiply and associated routines. We demonstrate the importance of
certain implementation decisions by tracking data movement through parts of the
memory hierarchy, which consists of registers, cache, and main memory. Furthermore,
we show the correlation between time to solution and data movement. Of particular
interest is the unexpected importance of optimizations that reduce movement of data
between levels of cache.

In this paper, we report on our investigation into a more memory-efficient iter-
ative linear solver and describe the resulting new block method. We emphasize the
implementation of the new method, numerous numerical test results, and evaluation
of performance based on the tracking of data movement. First, in Section 2, we re-
view the standard GMRES and Block GMRES algorithms and discuss considerations
for reducing an algorithm’s memory access costs. Next, in Section 3, we begin with
a description of the related LGMRES algorithm and then introduce our new block
method. We present convergence results for a variety of problems and discuss implica-
tions of implementation decisions on data movement in Section 4. Finally, concluding
remarks and recommendations are given in Section 5.

2. Background. In the previous section, we motivated our work, and now we
provide additional relevant background information. First we briefly review the stan-
dard GMRES algorithm. We then describe the Block GMRES algorithm and several

AN EFFICIENT BLOCK VARIANT OF GMRES 3

of its variants. Finally we discuss specific implications of the growing gap between
memory and CPU performance on an iterative solver code.

2.1. GMRES. We consider the solution of a large sparse system of linear equa-
tions:

(1) Az = b,

where A € R" " and z,b € R". Iterative methods are often chosen to solve such
linear systems, and, when A is nonsymmetric, the GMRES [51] algorithm is a common
choice. GMRES is a Krylov subspace method, and, therefore, selects an approximate
solution x,, € xo+K,, (4, 1), where K,,,(A4,r9) = Span{ry, Arg, ..., A™ 1ry} denotes
an m-dimensional Krylov subspace, r(is the initial residual, x is the initial guess, and
ro = b— Axg. The GMRES minimum residual property requires that ||b— A(zo + 2)||2
be a minimum over all z € K,,(A,rg), or, equivalently, that the residual after m
iterations satisfy r,, L AK,,(A,ro).

In practice, the resources required by the standard GMRES algorithm may be
impractical since storage and computational requirements increase with each iteration.
In this case, the restarted version described in [51] is typically used. In restarted
GMRES (GMRES(m)), the restart parameter m denotes a fixed maximum dimension
for the Krylov subspace. Therefore, if convergence has not occurred at the end of m
iterations, the algorithm restarts with ¢ = z,,. We refer to the group of m iterations
between successive restarts as a cycle. We denote the restart number with a subscript:
x; is the approximate solution after i cycles or m - i total iterations, and r; is the
corresponding residual (r; = b — Ax;). After 7 cycles, the residual is a polynomial in
A times the residual from the previous cycle: r; = p!™(A)r;—1, where p["(A) is the
degree m residual polynomial.

2.2. Block GMRES. Applications often arise in which several linear systems
with the same coefficient matrix A but different right-hand sides need to be solved
(e.g., see [55, 8]). These linear systems can be written as a single block linear system

(2) AX = B,

where A € R, X, B € R"*? and the columns of B are the different right-hand
sides. O’Leary first introduced block iterative solvers for block linear systems with
symmetric A with the Block Conjugate Gradient (BCG) and other related algorithms
in [45]. For nonsymmetric A, a block version of the GMRES algorithm (BGMRES) is
first described in [57]. Detailed descriptions can also be found in [53], [54], and [49].
BGMRES is essentially identical to standard GMRES, except that operations are
performed with multivectors instead of single vectors. As with the standard GMRES
algorithm, a restarted version of the BGMRES algorithm (BGMRES(m)) is commonly
used in practice. For reference, one restart cycle (i) of BGMRES(m) is given in Figure
1. The Arnoldi iteration is now a block orthogonalization process, creating a basis
for the block Krylov subspace K$,(A, R;) = Span{R;, AR;,..., A" 'R;}, where s
indicates the block size and R; is given in line 1 of Figure 1. Because the block linear
system (2) has s right-hand sides, the solution subspace is now of dimension m - s.
In addition to being able to solve a multiple right-hand side system, BGMRES is
desirable in terms of reducing memory access costs. By solving the block linear system
(as opposed to solving s systems individually), A now operates on a multivector
instead of a single vector at each iteration. Therefore, matrix A is accessed from
memory fewer times than it would be if each system were solved individually.

4 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

2. R =ViR

3.forj=1:m

4 Uj = AV

5. forl=1:j

6. H,; = VlTUj

7 Uj =U; —ViHy
8. end

9. Uj =Vit1Hjy1,5

10. end

11 Wi = [V1, Vo, ..., V], Hm = {Hij hi<i<j+ii<i<m
12. find Vi, s.t. ||E1R — HpnYon||2 is minimized
13. Xit1 = X; + WinYim

Fic. 1. BGMRES(m) for restart cycle i.

Several variants of the Block GMRES method have been developed for both mul-
tiple and single right-hand side systems. For multiple right-hand side systems, a
hybrid block GMRES method is presented in [53]. This block method is analogous
to a hybrid GMRES method for single right-hand side systems described in [41] and
often solves the block system faster than solving each single system individually due
in part to lower memory accesses. In addition, in [27], a block extension of Mor-
gan’s GMRES with eigenvectors routine [39] is described for multiple right-hand side
systems, and Morgan himself has developed a block extension of GMRES-DR, (GM-
RES with Deflated Restarting) [40, 38]. Methods such as Morgan’s that augment
the approximation space with eigenvector estimates are particularly useful for mod-
erately non-normal matrices with a few particular eigenvalues (typically those small
in magnitude) that inhibit convergence.

As explained in Section 1, of primary interest to us is the use of a block method
on a block linear system to solve a single right-hand side system. This strategy is
briefly noted as a possibility by O’Leary in [45] for block Conjugate Gradient algo-
rithms. To our knowledge, the first mention of using Block GMRES to solve a single
right-hand side system occurs in [9]. In this work, Chapman and Saad suggest that
convergence may be improved for Az = b by using a block method with approximate
eigenvectors or random vectors for the additional right-hand side vectors, particularly
when convergence is hampered by a few small eigenvalues. In addition, motivated by
a practical implementation, Li, in [34], presents a block variant of GMRES for single
right-hand sides systems that is mathematically equivalent to standard GMRES. His
method is implemented as an s-step method; matrix A performs s consecutive matrix-
vector multiplies at each iteration. In addition, this blocked implementation allows
for the use of level 3 BLAS (Basic Linear Algebra Subprograms) [14], the advantages
of which are described in the next section. The primary drawback of Li’s method is
loss of accuracy with increasing block size.

In [57], Vital shows that the residual obtained from BGMRES is bounded by the
maximum of any of the residuals obtained from running standard GMRES on each
single right-hand side system. This result implies that augmenting a single right-hand
side system with additional right-hand sides (such as with eigenvector approximations
as in [9]) does not increase the number of times A is accessed from memory, provided
the iteration terminates when the solution to the original single right-hand side system

AN EFFICIENT BLOCK VARIANT OF GMRES)

converges. However, with restarting, convergence analysis is more complex, and a
similar conclusion cannot be drawn.

2.3. Considerations for reducing memory costs. Algorithmic changes in a
numerical code affect the manner in which data are moved through a memory hierar-
chy. Floating-point operations typically occur after data are moved from the slower
part of the memory hierarchy (main memory) to the faster and more limited caches
to the registers. Two levels of cache are typical for current microprocessor designs,
and three levels are increasingly common. We are most interested in data movement
between main memory and cache and between levels of cache as this movement is
most affected by our algorithmic changes. L1 caches typically have access times of
two to three clock cycles. Access times are generally 5-15 times slower for L2 caches
and 20-30 times slower for L3 caches. Accessing data from main memory typically re-
quires at least 100 times more cycles than does accessing data from L1 cache. Several
complete hardware specifications are found in [58, 42, 6, 32].

Data are moved through a memory hierarchy in units called cache lines. Cache
lines are used efficiently when data items located in a single cache line are accessed in
close succession. A program with this property has good memory reference locality
[28] which helps to minimize data movement. However, sparse matrix-vector multiply
routines often have poor memory reference locality due to the use of compressed
storage formats for sparse matrices. These storage schemes generally result in irregular
patterns of memory referencing via indirect addressing (e.g., see [22, 16]).

Approaches to improving the performance of the sparse matrix-vector multiply
for a given matrix problem include reordering the matrix and choosing matrix-specific
data structures (e.g., see [56]). In particular, one approach is to optimize the sparse
matrix-vector multiplication by representing the sparse matrix as a collection of small
dense blocks (e.g., see [29, 47, 58]). These dense blocks are created through matrix
reordering, the addition of non-zero elements, or a combination. This optimization
technique reduces indirect addressing, which in turn reduces the impact of memory
system latency on algorithm performance. Another well-known technique referred
to as loop blocking involves writing matrix operations that divide the matrix into
submatrices or blocks that are better suited for reuse in cache than a matrix row
or column array (e.g., see [24, 7, 33]). For example, the dense level 2 and 3 BLAS
[15, 14] employ loop blocking, and codes based on these routines often achieve good
performance because they minimize data movement (e.g., see [24, 12, 14, 13, 25]).

Of particular interest to us is an approach in [25, 26] that improves the perfor-
mance of multiple sparse matrix-vector multiplies. This approach allows the mul-
tiplication of a multivector of size four (i.e., a group of four vectors) by a ma-
trix at about 1.5 times the cost of calculating a single matrix-vector product. The
storage of the vectors (as opposed to the matrix) are manipulated to maximize
cache line reuse in the following manner. Consider the size s multivector V', where
V = [v1,v2,...,vs] for vectors vy, va, ..., vs € R*¥1. Instead of placing succes-
sive elements of a single vector next to each other in the multivector, multivector
V is stored as a vector of length n - s in which the components of the s vectors are
interlaced. Therefore multivector elements separated by stride s belong to a single
vector: vy = [V(0);V(s);V(2s);...;V(ns — s)]. This optimization effectively in-
creases the number of floating point operations performed on data in cache by placing
corresponding elements of each vector in the same cache line, reducing the required
memory bandwidth. In Section 4, we demonstrate the advantages of this multivector
implementation for our new method with numerical results and offer a more detailed

6 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

explanation of the specific areas of performance gains.

3. A new block algorithm: B-LGMRES. As noted in Section 1, our ap-
proach to improving data reuse for restarted GMRES is to reformulate the algorithm
to solve a single right-hand side linear system as in (1) via a block linear system as in
(2). However, to reduce memory access costs effectively with algorithmic changes,
these changes cannot degrade the numerical properties of the original algorithm.
Therefore, our goal in choosing appropriate families of additional right-hand sides
and starting vectors was to select vectors that would accelerate convergence to the
single right-hand side solution. For this reason, we looked to augmented Krylov sub-
space techniques and restarted Krylov method properties for inspiration in choosing
these vectors.

Consider the generic case where vector ¢; is chosen as an additional right-hand side
vector with a corresponding zero initial guess for restart cycle ¢+ 1. This choice results
in an approximation space consisting of Krylov spaces KC,,,(A4,r;) and K,,(4,¢;). In
other words,

(3) zipn =z + gy (A + [T (A,
where /77" and f/77" are degree m — 1 polynomials. As a result, the residual after
i+ 1 restart cycles is

riv1 = Py (A)rs + g7t (A)ei,

where pjt | and gi}, are degree m polynomials with pj},(0) = 1 and gj%}; (0) = 0. The
fundamental problem when converting a single right-hand side system into a block
system is finding a readily available vector ¢; such that ||r;y1]|> is minimized through
choices of pt, and g/ ,.

The LGMRES method [3] is a restarted augmented Krylov subspace technique.
It is well-known that subspace information is lost due to restarting, and the LGMRES
augmenting scheme in some sense compensates for this loss by augmenting with certain
error approximations. We found that using these same error approximation vectors as
additional right-hand side vectors, such as ¢; in (3), is quite effective. In this section,
we first briefly review the LGMRES method, to which our new method is closely
related. We then present the new algorithm, discussing its implementation and some
additional considerations.

3.1. A review of the LGMRES method. In [3], two of the authors of this
work present the LGMRES (“Loose” GMRES) method, a technique for accelerating
the convergence of restarted GMRES. The LGMRES method is an augmented Krylov
subspace method that requires only minor changes to the GMRES(m) algorithm. At
the end of each restart cycle of LGMRES(m, k), k vectors that approximate the error
from previous restart cycles are appended to the standard Krylov approximation
space.

Let z; and x;_; be the approximate solution vectors after ¢ and ¢ — 1 restart
cycles, respectively, of standard GMRES(m). Let & be the true solution to (1). We
denote the error after the i-th restart cycle by e;, where

(4) e; = T — T;.
Because x; is found such that x; € ;1 + K (A, r;—1), then

(5) Zi =X — Ti—1

AN EFFICIENT BLOCK VARIANT OF GMRES 7

L ori =b— Azi, B =||rill2, vi =7i/B
2. for j=1:m+k
Av; if j<m
3 U= .
Azi_(jom—1) otherwise
4. forl=1:j
5 hij = (u,vr)
6 uUu=u— hl,jw
7 end
8. hjvis = |lullz, vitr = u/hjy1;
10. end
11. Werk = [Ula ceeyUmy Ziyeeny Zi*kle]: Hm+k = {hl,j}1§l§j+1;1§j§m+k

12. find Y4k s.b. ||Ber — Hmt+kYm+k||2 1s minimized
13. zit1 = WigkYm+k (also Azip1 = Vigrt1 Hot b Ymtk)
4. ziy1 =i + zit1

FiGc. 2. LGMRES(m, k) for restart cycle i (Figure 1 in [3]).

is an approximation to the error in the approximate solution after ¢ restart cycles,
where z; = 0 for i < 1. An error approximation is a natural choice of vector with
which to augment our next approximation space IC,,(A,r;) since augmenting with
the exact error would solve the problem exactly (e.g., see [19]). Furthermore, because
z; € Kim(A,r;—1), it in some sense represents the space K., (A, r;—1) generated in
the previous cycle. Therefore, after ¢ + 1 restart cycles, LGMRES(m, k) finds an
approximate solution to (1) in the following way:

i
(6) Ti4+1 = T; + qﬁ]l(A)ri + Z QijZj,
j=i—k+1

where polynomial qﬁfl and «;; are chosen such that ||r;11]|2 is minimized.
As shown in [3], equation (6) can be rewritten as

i
_ om—1
Zit1 = qiy, (A)ri + Z QijZj,
j=i—k41

and the error approximation vectors z; = z; — zj—; with which we augment the
Krylov space are A* A-orthogonal. In this form, the LGMRES(m, k) algorithm re-
sembles a truncated polynomial-preconditioned full conjugate gradient method where
the polynomial preconditioner is a GMRES(m) iteration polynomial that varies with
each step (7). The LGMRES(m, k) implementation requires minimal modifications to
the standard GMRES(m) implementation and, in fact, is similar to that of Morgan’s
GMRES with eigenvectors (GMRES-E) method [39]. The LGMRES method is also
closely related to the Flexible GMRES [48] method (e.g., see [50]). For reference,
pseudo-code for one restart cycle (i) of LGMRES(m, k) is given in Figure 2. In the
first cycle (i.e., i = 0) of LGMRES(m, k), no error approximation vectors are available
since zg = 0. In general, for cycles i < k, only i error approximations are appended
to the space, irrespective of the value of k.

3.2. Idea. The augmentation scheme used by the LGMRES(m, k) algorithm is
easily extended to a block method. We refer to this block extension as B-LGMRES(m,
k), for “Block” LGMRES. The B-LGMRES method solves a single right-hand side

8 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

system (1) via the block system (2). In B-LGMRES(m, k), the k previous error
approximations z; are now used to build additional Krylov subspaces, as opposed
to simply being appended to the approximation space as in LGMRES(m, k). Con-
ceptually, we view one restart cycle (i) of B-LGMRES(m, k) as a cycle of standard
BGMRES on the system AX;;; = B, where B contains the right-hand side of (1)
and the k most recent error approximations z;, j = (i — k + 1) : i. In other words,
B =1[b, z, ..., zi—g+1]- The previous approximate solution, X;, is then written as
X; = [zi, 0, ..., 0], where the solution to our single right-hand side system, z; is
placed in the first column and the remaining columns are set to zero. X and B are
now size n X (k + 1) or n x s, where s = m + k indicates the block size.

After ¢ + 1 restart cycles, the B-LGMRES(m, k) approximation space consists
of the traditional Krylov portion built by repeated application of A to the current
residual r; together with Krylov spaces resulting from the application of A to previous
error approximations:

Tip1 €T+ Km(A,r) + Y Kim(4, 2).
j=i—k+1

Similar to the formulation of LGMRES(m, k) given in (6), we now write the B-
LGMRES(m, k) approximation as

i
(7) v =z g A+ Y ali T (A)z,
j=i—k+1

where degree m — 1 polynomials azr»?fl and qﬂ_]l are chosen such that ||r;+1||2 is min-
imized. The primary difference between the LGMRES approximation in (6) and the
B-LGMRES approximation in (7) is that the coefficients a;; of z; in B-LGMRES(m,
k) are now polynomials in A. In both (6) and (7), K = 0 corresponds to standard
GMRES(m). Recall that after i + 1 cycles, GMRES(m) finds

Iricallz = min ([T = Agip1 (A))rill2,
2i+1E€EPm—1
where P,,_1 is the space of polynomials of degree < m + 1 (e.g., see [49]). Now a
similar expression is given for B-LGMRES(m, k); in particular, for k =1,

Irigallz = min_ [|(I = Agit1 (A))ri + i (A)(ri — rie1)ll2-
Qit1,0ii EPm_1

Note that polynomial a;;(A) is defined in (7), and from (5), Az; = ri—1 — r;.

Alternatively, it is natural to think of restart cycle ¢ + 1 of GMRES(m) and B-
LGMRES(m, k) in terms of minimizing ||e;41||a~ since this minimization is equiva-
lent to minimizing ||7;j4+1]|2- Recall that e;+1 is the true error (not an approximation
like z;11) as defined in (4). To simplify the following discussion, we consider the par-
ticular case for B-LGMRES(m, k) where k = 1. After i + 1 restart cycles, GMRES(m)
finds an approximate solution x;+1 € x; + qﬁfl(A)ri such that

eit1 Lasa Km(A,r;).
The error e;41 is written as

(8) eiy1 = [— Aq;ifl(A)]ei-

AN EFFICIENT BLOCK VARIANT OF GMRES 9

In contrast, B-LGMRES(m, 1) finds x;41 as in (7) such that
eit1 Lara Km(A, i) + Km(A,ei —ei1),
resulting in

(9) eirr = [T = AqRT (A) + i (D]]es — af ™ ()i

(23

Comparing (8) and (9), we note that for B-LGMRES(m, 1), the new error e;11 now
depends on the error from two previous restart cycles, e; and e; 1.
Now we re-write B-LGMRES(m, k) in (7) in the following way:

(10) i = afi (At Y af!

j=i—k+1

In the above form, as shown for the LGMRES method, this block method resem-
bles a truncated polynomial-preconditioned full conjugate gradient method with vari-
able preconditioning. In this analogy, the polynomial preconditioner is ¢ +1 , and it
changes at each step (¢). In addition, the error approximation vectors z; are analogous
to conjugate gradient direction vectors (e.g., see [2]), and now these direction vectors
are weighted by polynomials in A instead of scalars. As in Theorem 3 of [3], it is
easily shown that these direction vectors z; are A* A-orthogonal.

THEOREM 1 (Orthogonality of the error approximations). The error approxima-
tion vectors zj = x; — xj—1 with which we augment the Krylov space in B-LGMRES
are A* A-orthogonal.

Proof. We define subspaces M;;; and M; as

Miv1 = Km(A, 1) + Z Kum(A, z)
j=i—k+1
and
Mi = K (A,risn) + Z/c (4,2)),
j=i—k

respectively. Finding a new z;11 € M;11 such that ||r;11 (|2 is minimized as in (10) is
equivalent to requiring that

(11) 6i+1 J_A*A Mi—i—l-
By recursion,
e; La~a M;.
Because
€ —€i+1 = Zit+1,
then

Zix1 Lasa M; N Mg,

10 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

Recalling the definitions of M;;; and M; and that z; € M;,
{Zj}jZ(i7k+1):i C Mz N MH—I-
As a result,

Ziv1 Lasa {2} j=(i—k+1)-

d

To provide additional insight into the B-LGMRES augmentation scheme, we now
examine the B-LGMRES method in the framework presented in [9]. In [9], Chapman
and Saad consider the addition of an arbitrary subspace, W, to the standard Krylov
approximation space of a minimum-residual method, such as GMRES. This addition
results in the augmented approximation space

(12) M=K+W,

where K is a standard Krylov subspace. A minimal residual method finds an ap-
proximate solution & € xg + M such that the residual 7 satisfies ¥ L AM, removing
components of the initial residual ry in subspace AM via an orthogonal projection
process. Following the discussion in [9], the minimization process over the augmented
approximation space (12) is

7l = win [Ip — Ad — Awlla,

where d € xg + K and w € W. Chapman and Saad then show that if r; results from
minimizing ||b — Ad||2, where again d € z¢ + K, then

(13) 172 < [I(I = Paw)rall2,

where Paw is an orthogonal projector onto subspace AW. In particular, for a cycle
of B-LGMRES(m, k) with k = 1, we have that K = IC,,, (A, ;) and W = K, (4, 2;) =
Km(A,e; —ej—1). Therefore from (13), we see that the addition of W in the B-
LGMRES method results in the removal of components of r4 (the residual from the
standard Krylov approximation space) from the subspace AK,,(A,e;—e;_1), or equiv-
alently, the removal of components of the error from subspace K,,(4,e; —e;_1).

3.3. Implementation. The implementation of B-LGMRES(m, k) is similar to
that of BGMRES given in Figure 1. The primary difference is that B-LGMRES(m,
k) finds approximations z; at each restart cycle to the solution of the single right-
hand side system (1), as opposed to the block system (2). One restart cycle (i) of
B-LGMRES(m, k) is given in Figure 3.

Though we think of the error approximations z;, j = (i — k+ 1) : i as additional
right-hand side vectors, we are only solving a single right-hand side system and do
not need to save the block approximate solutions X;. Instead we append the k most
recent, error approximations to the initial residual to form a block residual R;, as seen
in line 2 of Figure 3. We normalize the error approximations (z;/||z;]|2) so that each
column of the initial residual block R; is of unit length. During each restart cycle,
an orthogonal basis for the block Krylov space K3,(A, R;) is generated. Using the
same notation as in Section 2.2, the size n x s orthogonal block matrices V; form
the orthogonal n x m - s matrix W,,, where W,,, = [Vi,Vs,...,V,,]. H,, is a size

AN EFFICIENT BLOCK VARIANT OF GMRES 11

1. ri = b— Al‘i, [8 = ||T1||2

2. Ri = [Ti, Zigeeey Zi7k+1]

3. Ri=ViR

4. for j=1:m

5. Uj = AV

6. forl=1:j

7. H,; = VlTUj

8. U =U; — ViH;

9. end

10. Uj =Vit1Hjy1,5

11. end

12. Wi = [Vi,Va, ..., Vi, Hi = {Hij hi<icivii<i<m
13. find ym, s.t. ||Ber — HmYm||2 is minimized
14. Zi+1 = mem

15. Tjy1 = @i + zi41

Fic. 3. B-LGMRES(m, k) for restart cycle i.

(m + 1)s x m - s band-Hessenberg matrix with s sub-diagonals, and the following
standard relationship holds:

AWm - Wm+1Hm.

Because B-LGMRES(m, k) finds the minimum residual approximate solution
xi+1 to Az = b, the least squares solution step (line 13) varies from that of standard
BGMRES (which minimizes a block residual). B-LGMRES(m, k) finds y,, such that
Tir1 = i + WinYm, where y,, is size m - s x 1. As a result, triangular matrix R
from the QR decomposition in line 3 does not need to be saved since the least-squares
solve only requires 5 = ||r||2. As with BGMRES, B-LGMRES(m, k) still requires the
application of s? rotations at each iteration to transform H,, into an upper triangular
matrix (see [49] for more details). However, now only s rotations must be applied to
the least-squares problem’s right-hand side (8e;) at each step.

As with LGMRES, only i error approximations are available at the beginning of
restart cycles with 7 < k. As a result, the creation of the initial residual block in line
2 of the B-LGMRES(m, k) algorithm must be modified for the first k cycles where
i < k. (the first cycle is ¢ = 0). Recall that z; = 0 for j < 1, and when z; = 0, we
say that z; is an error approximation that is not available. In our implementation,
we replace any z;,...,2;—r+1 that is not available with a randomly generated vector
of length n. This choice is justified in Section 3.4.

We refer to a group of vectors as a multivector. For the B-LGMRES(m, k)
implementation given in Figure 3, the multivectors are size s, where s = k + 1. For
example, the orthogonal block matrices V; in lines 3, 5, 8, 10, and 12 of Figure 3 are
size s multivectors consisting of s vectors of length n. In addition, R; in lines 2 and 3
and Uj in lines 5, 7, 8 and 10 are also multivectors. The matrix-multivector multiply
occurs in line 5, and the importance of this aspect of the implementation is shown in
Section 4.2.

In Figure 3, observe that one restart cycle, or m iterations, of B-LGMRES(m,
k) requires m matrix-multivector multiplies, irrespective of the value of k. Therefore,
matrix A is accessed from memory m times per cycle. The B-LGMRES(m, k) algo-
rithm requires storage for the following vectors of length n: (m+ 1)s orthogonal basis

12 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

vectors (V1,Va, ... Viuy1), k error approximation vectors (z;), the approximate solu-
tion (z;), and the right-hand side (b). Therefore, B-LGMRES(m, k) requires storage
for (m + 2)s + 1, or equivalently (m + 2)k +m + 3, vectors of length n.
B-LGMRES(m, k) is compatible with both left and right preconditioning. We
denote the preconditioner by M —!. For left preconditioning, the initial residual in line
1 of Figure 3 must be preconditioned as usual: r; = M ~'(b— Az;). Then we replace A
with M ~'A4 in line 5. To incorporate right preconditioning, we replace A with AM !
in line 5. We define 2; = M(z; — xj_1) = Mz; and replace z with Z everywhere in
lines 2 and 14. While no explicit change is required for line 15 as given in Figure 3,
note that, with right preconditioning, line 15 is equivalent to 2;41 = x; + M 12;,1.

3.4. Additional algorithmic considerations. Deflation is often an important
issue for block methods since solutions that correspond to different right-hand sides
typically converge at different rates. Deflating the converged system from the block
system, i.e., modifying the block size, or avoiding the need for deflation through
algorithmic changes have been addressed in various ways (e.g., see [45, 44, 23, 10, 18]).
For the B-LGMRES method, we find that deflation is not required. Because we are not
solving a block linear system, the problem of varying convergence rates for multiple
solutions does not apply. However, we now discuss the possibility of rank deficiency
for the initial residual block.

Consider the initial block residual for restart cycle i: R; = [ri, 2i, -+, Zi—k+1]-
The initial residual block is rank deficient only if any of the vectors (r; or z;, j =
i:(i —k+ 1)) are linearly dependent. Recall from the previous section that random
vectors are used in place of unavailable error approximation vectors in cycles ¢ < k.
Therefore, all z; are random for the initial cycle. Statistically these random vectors
will be linearly independent of the other vectors in the initial residual block (cf. [30]).

For simplicity, consider the k& = 1 case for restart cycle ¢ > 1. The initial residual
block is R; = [ri, z;]. If r; is the zero vector, then the solution has been found. If
z; = 0, stalling has occurred. Now assume that both r; and z; are not zero, and R;
is rank deficient. Then r; and z; are linearly dependent and r; ~ az; for some a # 0.
Using the definitions in the proof of Theorem 1, we have that z; € M;. As in (11),
the minimal residual property gives r; L AM;, and, therefore,

<T‘i, AZZ> = 0,

where (-,) denotes the Euclidean inner product. So for linearly dependent r; and z;
we have

(14) afz;, Az;) = 0.

Because z; # 0 implies stalling has not occurred, then r; # r;_1. By definition r; =
ri—1 — Az;, and, as a result, Az; # 0. Therefore since r;, z;, Az; and « are all nonzero,
(14) can only hold if A is not positive definite and z; L Az;.

As a result, the initial residual block is rank deficient if any of the following three
cases is true: r; =0, z; = 0, or A is not positive definite and z; L Az;. The first case
is not an issue since r; = 0 indicates that a solution has been found. In the second
case, stalling has occurred, and including z; in the initial residual block at the start
of the cycle does not make sense. However, at worst z; &~ 0 in practice since this is a
finite precision computation. Similarly, the third case is unlikely, particularly in finite
precision. In fact, we have not had any breakdowns due to rank deficiency in R; in
practice.

AN EFFICIENT BLOCK VARIANT OF GMRES 13

4. Numerical Experiments. In this section, we present promising experimen-
tal results from our implementation of the B-LGMRES method on problems from
a variety of application areas. First, in Section 4.1, we compare our B-LGMRES
implementation to the standard GMRES implementation available in PETSc 2.1.5
(Argonne National Laboratory’s Portable, Extensible Toolkit for Scientific Computa-
tion) [5, 4]. We also compare the B-LGMRES method to the PETSc implementation
of the LGMRES method described in [3]. In Section 4.2, we demonstrate the advan-
tage of the matrix-multivector approach discussed in the previous section. We provide
results from monitoring the movement of data through the memory hierarchy during
the B-LGMRES solve to explain how performance gains occur.

We implemented the B-LGMRES algorithm in C using a locally modified version
of PETSc 2.1.5. The PETSc 2.1.5 libraries contain the tools for storing a multivec-
tor in the interlaced format described in Section 2.3, referred to as multi-component
vectors in the PETSc manual [4]. We use the PETSc matrix-vector multiply routine
for multiplying a matrix by a multi-component vector in B-LGMRES. Additionally,
we modified our local installation of PETSc to include multivector versions of the
PETSc routines VecDot, VecAXPY, VeceMAXPY, and MatSolve. VecDot and Ve-
cAXPY are the vector dot product and axpy routines, respectively, required in the
modified Gram-Schmidt steps. VecMAXPY adds a scaled sum of vectors to a vector,
which is used when solving the least-squares problem. MatSolve performs a forward
and back solve for use with the ILU preconditioner. Our modifications to several of
these routines are discussed in more detail in Section 4.2.

We obtained test problems from the University of Florida Sparse Matrix Col-
lection [11], the Matrix Market Collection [43], and the PETSc test collection. For
reference, all test problems used in this section are listed in Table 1. If a right-hand
side was not provided, we generated a random right-hand side. For all problems, the
initial guess was a zero vector. All results provided were run on a single processor of
a 16-processor Sun Enterprise-6500 server with 16G RAM. This system contains 400
Mhz Sun Ultra IT processors, each with a 16 Kbyte L1 cache and a 4 Mbyte L2 cache.
It is running Solaris 5.9 with the Forte Developer 7 version 5.4 C complier.

TABLE 1
List of test problems together with the matriz order (n), number of nonzeros (nnz), precondi-
tioner, and a description of the application area (if known).

Problem n nnz Preconditioner Application Area
1 pesa 11738 79566 none
2 epbl 14734 95053 none heat exchanger simulation
3 memplus 17758 126150 none digital circuit simulation
4 zhao?2 33861 166453 none electromagnetic systems
5 epb2 25288 175027 none heat exchanger simulation
6 ohsumi 8140 1456140 none
7 aft01 8202 125567 ILU(0) acoustic radiation, FEM
8 memplus 17758 126150 ILU(0) digital circuit simulation
9 arcob 35388 154166 ILU(0) multiphase flow: oil reservoir
10 arco3 38194 241066 ILU(1) multiphase flow: oil reservoir
11 bcircuit 68902 375558 ILUTP(.01, 5, 10) digital circuit simulation
12 garon2 13535 390607 ILUTP(.01, 1, 10) fluid flow, 2-D FEM
13 ex40 7740 458012 ILU(0) 3-D fluid flow (die swell problem)
14 epb3 84617 463625 ILU(1) heat exchanger simulation
15 e40r3000 17281 553956 ILU(2) 2-D fluid flow in a driven cavity
16 scircuit 170998 958936 ILUTP(.01, .5, 10) digital circuit simulation
17 venkatb0 62424 1717792 ILU(0) 2-D fluid flow

14 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

4.1. Comparison with other methods. We demonstrate the potential of the
B-LGMRES method both with and without preconditioning by presenting experi-
mental results for multiple test problems. We first compare the performance of B-
LGMRES(m, k) to that of restarted methods GMRES(m) and LGMRES(m, k). We
then examine the correlation between the time to solution and number of matrix
accesses for these restarted methods. Finally we compare the time to solution of
B-LGMRES to that of full (non-restarted) GMRES. Because the focus of this work
is the solution of linear systems with single right-hand sides, we do not compare B-
LGMRES performance to that of BGMRES or any other method designed to solve a
system with multiple right-hand sides.

For each problem we report wall clock time for the linear solve only; we do not
time any I/O or the setup of the preconditioner. For the preconditioned problems,
we use the either the ILU(p) preconditioner, where p indicates the level of fill, or the
ILUTP(droptol, permtol, I fil) preconditioner, where droptol indicates the drop tol-
erance, permtol indicates the column pivot tolerance, and [fil is the fill-in parameter
(e.g., see [49]). The timings reported are averages from five runs and have standard
deviations of at most two percent. All tests are run until the relative residual norm is
less than the convergence tolerance ¢ = 107 | i.e., when ||r;||2/l|rol|2 < (. However,
if a method does not converge in 1000 restart cycles, then the execution time reported
reflects the time for 1000 cycles and we say that the method does not converge.

We evaluate the performance of B-LGMRES(m, k) for a particular problem by
comparing its time to converge to that of GMRES(m) and LGMRES(m, k) with equal-
sized approximation spaces. For reference, in Table 2, we list the approximation space
size, the number of vectors of length n stored, and the number of matrix accesses per
restart cycle in terms of parameters m and k for each method. Values of m and k may
be different for each method. For GMRES(m), we chose restart parameter m = 30
because it is a common choice for GMRES(m) and is the default in PETSc. Therefore
for this comparison, we required that the approximation spaces for both LGMRES(m,
k) and B-LGMRES(m, k) be of size 30 as well. Furthermore, we wanted to evaluate
the performance of LGMRES(m, k) and B-LGMRES(m, k) using the same number
of error approximation vectors, i.e., the same k, for each. In choosing a value of
k, we note that for LGMRES(m, k), k < 3 is typically optimal, and variations in
algorithm performance are small for k& < 3 (see [3]). Therefore, the performance
of B-LGMRES(m, k) determined our choice of k¥ = 1, which we justify in the next
paragraph. The choice of k = 1 together with the constraint of a size 30 approximation
space determined parameter m for each method. The three algorithms for which
we report the time required for convergence are given in Table 3 for clarification.
Notice that m and k were chosen for each method such that the three have equal
approximation space sizes and similar storage requirements for each restart cycle.

As shown in Table 3, the approximation space for B-LGMRES(15, 1) at restart
cycle i + 1 is given by Ki5(A,r;) + Ki15(4, ;). The B-LGMRES method with k£ = 2
and an approximation space of size 30 is denoted by B-LGMRES(10, 2). The B-
LGMRES(10, 2) approximation space at restart cycle i + 1 is given by Ki9(4,7;) +
K10(A4, zi)+K10(A4, zi—1). Therefore, only 10 vectors form the traditional Krylov space
K10(A,r;) associated with the current residual. When keeping the total approximation
space constant at size 30, using k > 2 decreases the dimension of the standard Krylov
space portion even further. For this set of test problems, preliminary testing showed
that using k& > 2 was typically not beneficial. In fact, we found that for these test
problems with an approximation space of size 30, B-LGMRES(m, k) with k = 1,

AN EFFICIENT BLOCK VARIANT OF GMRES 15

or B-LGMRES(15, 1), is optimal. B-LGMRES(10, 2) converges in less time than
B-LGMRES(15, 1) for only one problem. For several test problems, convergence was
similar, but in general B-LGMRES(15, 1) is the clear winner. For an approximation
space larger than 30, we expect that using £ > 1 would be an advantage more often.
However, note that, with increasing k, the amount of modified Gram-Schmidt work
per access of A increases.

TABLE 2
Algorithm specifications per restart cycle.

Method Approx. Length n Accesses
Space Size Vector Storage of A

GMRES(m) m m+3 m

LGMRES(m, k) m+k m+ 3k + 3 m

B-LGMRES(m, k) m(k+ 1) (m+2)k+m+3 m

TABLE 3
Specifications for one restart cycle of the three algorithms used in subsequent numerical tests.

Method Approx. Length n Accesses Approx. Space at
Space Size Vector Storage of A Restart Cycle ¢ 4 1
GMRES(30) 30 33 30 K3o(A,r;)
LGMRES(?Q, 1) 30 35 29]CQQ(A, 1"1‘) + z;
B—LGMRES(15, 1) 30 35 15 ’C15(A, Ti) + K:15(A, Zl)

We first present results for the non-preconditioned test problems, problems 1-6 in
Table 1. Figure 4 compares the time required for convergence for B-LGMRES(15, 1)
to both LGMRES(29, 1) and GMRES(30). The x-axis corresponds to the numbered
test problems given in Table 1. These six non-preconditioned problems are listed in
order of increasing number of nonzeros. The y-axis is the time required for conver-
gence for either LGMRES(29, 1) or GMRES(30) (the left and right bars, respectively)
divided by the time required for convergence for B-LGMRES(15, 1). Therefore, bars
extending above one indicate faster convergence for B-LGMRES(15, 1). For all of
these problems, B-LGMRES(15, 1) converges. However, arrows above the bars in
Figure 4 indicate that GMRES(30) did not converge in 1000 restart cycles for prob-
lem 1 and both LGMRES(29, 1) and GMRES(30) did not converge for problem 4. As
previously mentioned, the time for 1000 restart cycles is reported for methods that do
not converge, resulting in an understated ratio of improvement for B-LGMRES(15, 1)
for the bars with arrows. B-LGMRES(15, 1) converges in less time than GMRES(30)
for all problems. However, improvements of B-LGMRES(15, 1) over LGMRES(29, 1)
are more modest since LGMRES is typically also an improvement over GMRES(m)
[3].

We now examine the performance of B-LGMRES(m, k) on preconditioned prob-
lems, problems 7-17 in Table 1. We use ILU preconditioning because it is a com-
mon choice. We use left preconditioning which minimizes the preconditioned residual
norm (||M ~!r|2), and, therefore, the determination of convergence is based on this
preconditioned residual norm. A comparison of the time required for convergence for
B-LGMRES(15, 1) to both LGMRES(29, 1) and GMRES(30) is given in Figure 5.
As in Figure 4, the x-axis corresponds to the numbered test problems given in Table
1, and the y-axis indicates the ratio of the time required for convergence for either
LGMRES(29,1) or GMRES(30) to that of B-LGMRES(15, 1). Bars extending above

16 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

Ratio of Time Required for Convergence

9 T T T T T
, | EE LGMRES(29,1)

=8] GMRES(30) ||
57t a
W6t -
z _
5[i
7
a4 1
83 i
ey
©2r b
=

.l i

0

1 2 3 4 5 6
Problem

Fia. 4. A comparison of the time required for convergence for non-preconditioned test prob-
lems 1-6 with GMRES(30) and LGMRES(29, 1) versus B-LGMRES(15, 1). All methods use an
approzimation space of size 30, and problems are listed in order of increasing number of nonzeros.

Ratio of Time Required for Convergence
3 T T T T T

Hl LGMRES(29,1)
[1 GMRES(30)

251

1)

151 1

Method / B-LGMRES(15

7 8 9 10 11 12 13 14 15 16 17
Problem

F1c. 5. A comparison of the time required for convergence for preconditioned test problems 7-17
with GMRES(30) and LGMRES(29, 1) versus B-LGMRES(15, 1). All methods use an approzima-
tion space of size 30, and problems are listed in order of increasing number of nonzeros.

one favor B-LGMRES(15, 1).

Figure 5 shows that the time required for convergence for B-LGMRES(15, 1) is
less than that for GMRES(30) for problems 7-15 and about the same as GMRES(30)
for problems 16 and 17. However, because iteration counts are generally lower with
preconditioning, performance gains of B-LGMRES(15, 1) over GMRES(30) with pre-
conditioning are not as dramatic as those without preconditioning. For large problems,
though, even a small improvement in iteration count translates into a non-trivial time
savings. The comparison of B-LGMRES(15, 1) to LGMRES(29, 1) is not as straight-
forward. The LGMRES method is quite effective for these test problems, and, as
a result, LGMRES(29, 1) converges in less time than B-LGMRES(15, 1) for four

AN EFFICIENT BLOCK VARIANT OF GMRES 17

problems. Predicting which algorithm will “win” for a particular test problem is an
open question. As an example, we tested problem memplus both without and with
preconditioning, problems 3 and 8, respectively. For this problem, B-LGMRES(15, 1)
converges in slightly less time than LGMRES(29, 1) when no preconditioner was used,
but LGMRES(29, 1) is faster with preconditioning. In addition, it is well-known that
GMRES convergence behavior can depend on the right-hand side vector. Therefore,
we compared the results of B-LGMRES(15, 1), LGMRES(29, 1), and GMRES(30)
using four alternate right-hand sides for each test problem in Table 1. The qualitative
results from the additional four runs for each problem were the same as those shown
in Figures 4 and 5 with three exceptions: B-LGMRES(15, 1) converged in less time
for problems 9 and 16, and LGMRES(29, 1) converged in less time for problem 15.

TABLE 4
Matriz garon2, with n = 13535, nnz = 390607, and ILUTP(.01, 1, 10) preconditioning. Times
are in seconds and include mean and standard deviations of times for five runs.

Method Matrix-vector ~ Matrix Execution
Multiplies Accesses Time
GMRES(30) 1960 1960 165.9 + .6
LGMRES(29,1) 1292 1292 104.6 £+ .6
B-LGMRES(15, 1) 2008 1004 78.5 + .2

For all of the test problems in Table 1, we found that the time to solution of
the restarted methods generally correlates well with the number of accesses of A,
as opposed to the number of matrix-vector multiplies. For example, in Table 4 we
give the timing results for medium-sized problem garon2 (problem 12) where this
correlation is easily seen. A similar comparison for all 17 test problems is given
in Figure 6. In the top panel, the y-axis indicates the ratio of time required for
convergence to matrix accesses for the three algorithms: GMRES (30), LGMRES(29,
1), and B-LGMRES(15, 1). The x-axis of each plot corresponds to the numbered test
problems as usual. In the bottom panel, the y-axis indicates the ratio of the time
required for convergence to matrix-vector multiplies. The near constant ratio for all
three methods for each problem in the top panel shows that the number accesses of A
largely determines execution time. However, the ratios in the bottom panel are not
constant for each problem, indicating that the number of matrix-vector multiplies does
not correlate well with execution time for B-LGMRES(15, 1). In the next section, the
relative importance of individual sections of the algorithm, including preconditioning
and modified Gram-Schmidt orthogonalization, are discussed in detail.

Because our machine has sufficient resources, full GMRES is a viable option.
Therefore, we compare the time to solution of B-LGMRES(15, 1) to full GMRES for
each of the 17 test problems. In Figure 7, the y-axis indicates the log of the time
required for convergence for GMRES divided by the time for B-LGMRES(15, 1). Bars
extending above the x-axis favor B-LGMRES(15, 1), and bars extending below favor
GMRES. B-LGMRES converges in less time than GMRES on all but four problems:
problems 7, 10, 13, and 15. There is no correlation between problem size and method
in terms of time required for convergence for these test problems.

The experimental results presented in this section demonstrate that solving a
single right-hand side system via a block system can be an effective means of improving
the performance of an iterative method for sparse linear systems such as GMRES(m).
For the problems presented here, the time to solution of B-LGMRES(m, k) is typically
an improvement over that of GMRES(m), as shown in Figures 4 and 5, and is often

18 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

Correlation of Statistics for Convergence

» El GMRES(30)

3 B LGMRES(29, 1)

& B-LGMRES(15, 1

S 0.4 - (s.1) 1
©

X

B

= |
ko)

S

|_

0 2 4 6 8 10 12 14 16 18
Problem

T T T T T T

Bl GMRES(30)
B LGMRES(29, 1)
[B-LGMRES(15, 1)

Time/ Matrix—vector Multiplies

0 2 4 6 8 10 12 14 16 18
Problem

Fic. 6. The upper panel shows the ratios of time required for convergence to number of accesses
of A for GMRES (30), LGMRES(29, 1), and B-LGMRES(15, 1) on the 17 test problems. The
lower panel shows the ratios of time required for convergence to number of matriz-vector multiplies.

Ratio of Time Required for Convergence
2 T T T T T T T T

o -
o - (¢}

GMRES / B-LGMRES(15,1))
o

Log(
)
o

!

8 10 12 14 16 18
Problem

iR
o
Iy
~L
oL

F1G. 7. A comparison of the time required for convergence with B-LGMRES(15, 1) versus full
GMRES on the 17 test problems.

AN EFFICIENT BLOCK VARIANT OF GMRES 19

faster than full GMRES as well (Figure 7). The additional right-hand side vector(s) in
B-LGMRES inhibit the tendency of restarted GMRES to form similar polynomials at
every other restart cycle (see [3]), thus improving convergence. As with the LGMRES
method, B-LGMRES acts as an accelerator, but in general does not help with stalling.
In other words, B-LGMRES(m, k) has a total approximation space size of m - (k + 1)
and typically does not help problems that stall for GMRES(m-(k+1)), though we have
found a few exceptions. For problems that stall, full GMRES or Morgan’s GMRES-E
method [39] can be good options. Furthermore, B-LGMRES is not particularly helpful
when GMRES(m) converges in a small number of iterations. All of the test problems
in this section required at least ten restart cycles of GMRES(30) to converge.

4.2. Relationship between data movement and execution time. Refor-
mulating an iterative linear solver algorithm to use matrices in block operations re-
quires a balance between maintaining or improving the algorithm’s numerical proper-
ties and reducing data movement. The reduction in execution time of B-LGMRES (m,
k) over GMRES(m) shown in the previous section indicates that such a balance is
possible. In this section, we further quantify how B-LGMRES performance gains
occur from the reduction of data movement. We show that using the multivector im-
plementation described at the end of Section 2.3 is of key importance. We also show
that a reduction in execution time for our test problems in Table 1 correlates more
strongly to a reduction in data movement between levels of cache than to a reduction
between main memory and cache.

Recall from Section 2.3 that the interlaced storage scheme for multivectors places
corresponding elements of its constituent vectors in the same cache line. As a result,
the matrix multiply routine, for example, uses a higher fraction of elements from each
cache line for each access of a nonzero element of the coefficient matrix A. Therefore,
the number of floating-point operations performed per byte of data read from memory
is increased. The advantages of interlacing of data items in general are explained in
detail in [26]. To demonstrate the benefit of the multivector optimization specifically,
we implemented B-LGMRES in PETSc 2.1.5 both with and without multivectors.
We refer to our implementation of B-LGMRES with multivectors as the MV imple-
mentation. This implementation was described at the beginning of Section 4 and
produced the results given in Section 4.1. The B-LGMRES implementation without
multivectors, referred to as non-MV, represents the best non-multivector implemen-
tation possible with the tools available in PETSc. Both implementations were written
so as to eliminate any copy of data from one data structure to another and represent
a best coding effort.

Table 5 shows the impact of the multivector optimization on execution time by
comparing the MV and non-MV implementations of B-LGMRES for ten restart cycles.
The problems in Table 5 are a subset of the test problems in Table 1 with a range of
number of nonzeros (nnz). The percentage improvement of the MV over the non-MV
implementation is given in the right-most column of Table 5, and, as expected, the
MYV implementation has the lowest execution time for each problem. In fact, the MV
implementation, which has multivectors of size s = 2, is about twice as fast as the
non-MV implementation for B-LGMRES(15, 1), regardless of the value of nnz. For
the remainder of this section, we detail how the multivector optimization impacts
various sections of the code, and we explore the relationship between data movement
through the memory hierarchy and execution time.

The multivector optimization impacts more than just the matrix multiply in line
5 but rather pervades the entire algorithm. For example, because U and V in the B-

20 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

TABLE 5
A comparison of execution times (in seconds) for the MV and non-MV implementations of
B-LGMRES(15, 1) for ten restart cycles. The matriz order (n), number of nonzeros (nnz), and
percentage improvement of the MV over the non-MV implementation are also listed.

Execution Time Relative

Problem n nnz MV non-MV improvement
1 pesa 11738 79566 1.7 3.5 51%
3 memplus 17758 126150 2.5 5.1 51%
10 arco3 38194 241066 17.2 30.5 44%
11 bcircuit 68902 375558 26.1 48.4 46%
13 ex40 7740 458012 9.0 20.4 51%
14 epb3 84617 463625 325 63.5 49%
16 scircuit 170998 958936 80.7 151.6 47%
17 venkath0 62424 1717792 61.6 113.6 46%

Breakdown of Total Execution Time for MV
1

0 091 - - —
1S
=0.81 1
C
Lo0.7f 1
3
©0.6F |

X
[0}

§0.5* 1
204 1

——

§ O3/ mmm MatMult I

So.2 HE MGS 1

C 01h [Prec
||] Other
0

0 2 4 6 8 10 12 14 16 18
Problem

Fia. 8. Percentage of time for each section of code of the MV implementation of B-
LGMRES(15,1) for the 17 test problems.

LGMRES algorithm given in Figure 3 are stored as multivectors, the orthogonalization
routines in lines 6 - 9 require modification as well. In fact, three primary sections of the
B-LGMRES code are impacted by the multivector optimization: the matrix-vector
multiply (MatMult), the modified Gram-Schmidt orthogonalization (MGS), and the
application of the preconditioner (Prec), if required. Because the Prec section of code
shows similar characteristics to the MatMult section, we only discuss the MatMult
and MGS sections of code. For reference, Figure 8 gives the percentage of time spent
in each of the three primary sections for the MV implementation of the B-LGMRES
algorithm. The Other category represents the difference between the total time and
the sum of times for the three sections shown. For our 17 test problems, execution
time is not consistently dominated by a single section of the B-LGMRES code.

The MatMult section of the code is the matrix-vector multiply in line 5 of Figure
3. For the non-MV implementation, successive calls are made to a matrix-vector
multiply routine for each individual vector in Vj. In contrast, the MV implementation
utilizes a single call to the PETSc matrix-multivector multiply routine, as described
in the beginning of Section 4. The matrix-multivector multiply groups computations
on the same data, which allows more floating-point operations per byte of data moved

AN EFFICIENT BLOCK VARIANT OF GMRES 21

through the memory hierarchy. In fact, the use of the matrix-multivector multiply has
the potential to reduce the amount of data moved through parts memory subsystem
by a factor of s, where s is the number of vectors in the multivector. Following the
experimental results in the previous section, we concentrate on a multivector of size
s = 2 which corresponds to B-LGMRES(m, k) with k& = 1.

The size of the data structures determines the part of the memory most affected
by the multivector optimizations for the MatMult section of code. In particular, we
denote the size of the data structures accessed by the MatMult section by W.Snratnrue
which is the working set size. W Spratmw 18 approximately equal to the storage
required for matrix A. The matrix, which is stored in AIJ format, requires an array
of double precision floating point values of length nnz, and two arrays of integer values
of length nnz and n which represent the column and row pointers, respectively. Note
that PETSc AIJ matrix storage format is equivalent to compressed sparse row storage
(e.g., see [49]). Therefore, the size of the matrix A is calculated by

(15) sizeof(A) = sizeof(double) x nnz + sizeof (int) x (n + nnz),

where double is a double precision value, int is an integer value, and function sizeof ()
returns the size of its argument in bytes. If WSyatnrur & sizeof(A) is significantly
larger than the L2 cache size, then successive calls to a matrix-vector multiply rou-
tine repeatedly read matrix A from main memory through both levels of cache. For
W Saratarwie smaller than the L2 cache size but larger than L1, portions of matrix
A may remain in L2 cache and allow some L2 cache reuse for the successive calls to
matrix-vector multiply in the non-MV implementation.

As seen in Figure 8, the MGS section of code (lines 6-10 in Figure 3) often
contributes significantly to the overall cost of the B-LGMRES algorithm. In fact,
this section of code consumes more than 50% of the time to solution for several of
the test problems. This section of code required the creation of multivector versions
of the PETSc routines VecDot and VecAXPY. Following the PETSc use of Stride to
denote multivector versions of common functions, we refer to the new versions of these
routines as VecStrideDot and VecStrideAXPY, respectively. These routines represent
the majority of the total time for the MGS section. Therefore, we wrote the routines
in a manner that limits movement of data by fusing together computations on related
data. For example, the functionality provided by VecStrideDot for a multivector of
size s is equivalent to s2 successive calls to VecDot (the approach used in the non-MV
implementation). With successive calls to VecDot, 2 - n - s* data values must be read
from the memory hierarchy. VecStrideDot reduces the number of data values read to
2-n-s. Therefore if WSy s = sizeof (double) -2 -n - s is greater than either the L1
or L2 cache size, use of the multivectors impacts data movement in the MGS section
of code.

Both VecStrideDot and VecStride AXPY were written using loop temporaries and
loop unrolling to aid compiler optimization. The use of loop temporaries allows a
compiler to identify data reuse more easily at the register level. Loop unrolling further
helps register reuse and allows different iterations of the loop to occur simultaneously.
In Figure 9, we illustrate these optimization techniques applied to the inner loop
of VecStrideAXPY. Recall that each multivector consists of two vectors of length n.
Version A in Figure 9 is a ‘naive’ implementation of the loop (without loop temporaries
and unrolling). In Version B, we use loop temporaries, which means that references
to the alpha and z arrays are replaced with scalars. Version C incorporates loop
unrolling: the inner loop in Version B is unrolled by a factor of two. Version D is not

22 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

[H=mmmmm e version A ——---------m—mmm—mmm—mmm oo */
stride=2; m=stride*n;
for (i=0; i<dm; i+=stride) {

y[i] = y[i] + alpha[0]*x[i] + alphal[1]l*x[i+1];
y[i+1] = y[i+1] + alpha[2]*x[i] + alpha[3]*x[i+1];}
[Hmmmm e version B ——==—=-——mmmm e e e x/

stride=2; m=stride*n;
a0=alpha[0]; al=alphal[1]; a2=alphal[2]; a3=alphal[3];
for (i=0; i<dm; i+=stride) {

x0=x[i]; x1=x[i+1];

y[il = y[il + a0*x0 + al*xl;
yli+1] = y[i+1] + a2xx0 + a3+x1;}
[Hmmmmmmm e version C ---------—=-------ommmomm oo */

stride=2; m=stride*n;
unroll=2; step=unroll*stride; mm=m/step; rem=mjstride
a0=alpha[0]; al=alphal1]; a2=alpha[2]; a3=alphal3];
for (i=0; i<(mm*step); i+=step) {

x0=x[i]; =x1=x[i+1]; x2=x[i+2]; x3=x[i+3];

y[il = y[il + a0*x0 + al*xl;
y[i+1] = y[i+1] + a2*x0 + a3*x1;
yl[i+2] = y[i+2] + a0*x2 + al*x3;
y[i+3] = y[i+3] + a2*x2 + a3#*x3;}
if (rem)
for (i=mm*step; i<m; i+=stride) {
y[i] = y[i] + a0*x[i] + al*x[i+1];
y[i+1] = y[i+1] + a2*x[i] + a3*x[i+1];}
[K= m e e version D ====----mmm e e */
/* Unrolled version of C where unroll=4 */

Fic. 9. Code to perform a multivector AXPY operation. Successive versions add additional
optimization techniques.

shown in Figure 9 but is the version B loop unrolled by four. In Table 6, the timings
to perform each version of the loops in Figure 9 as well as the functional equivalent
for the non-MV implementation are given in usec for a subset of the test problems
with a range of matrix orders. Note how successive optimizations either have no
impact or reduce the execution time in each case. The combination of optimizations
in version D of the loop results in a 40% reduction on average in execution time for
the VecStrideAXPY routine over its non-MV equivalent. Therefore, loop version D
was used in all subsequent timings in this section. Because the MGS section can
consume a large percentage of total execution time, simple optimizations such as
those in VecStrideAXPY have as significant an impact on overall execution time of
the solver as the use of the matrix-multivector multiply routine.

Having described the multivector modifications to the MatMult and MGS sec-
tions, we now determine the effects of these changes by comparing the execution
times for both sections of code in the non-MV and MV implementations. In Figure
10, the y-axis indicates the execution time for the non-MV implementation divided
by the execution time for the MV implementation for both the MatMult and MGS
sections of code. The x-axis contains the 17 test problems. A value greater than
one indicates that the execution time for MV is less than that for non-MV. The MV
implementation reduces the execution time of the MatMult section by a factor 1.4 to
2.7 over the non-MV implementation. The least improvement in execution time for
the MatMult section occurs for problems 4 and 9. These problems have neither the

AN EFFICIENT BLOCK VARIANT OF GMRES 23

TABLE 6
Ezecution times in usec for a single call to VecStride AXPY for the non-MV implementation
and MV implementations with loop versions A - D in Figure 9. Relative improvement of version D
versus non-MV is also listed. Problems are listed in increasing order of matriz size (n).

VecStrideAXPY time (psec) Relative
Problem n non-MV A B C D Improvement
13 ex40 7740 1.8 1.3 1.3 1.2 1.1 39%
3 memplus 17758 4.4 2.9 2.8 2.7 2.5 43%
11 bcircuit 68902 17.2 11.3 10.3 103 94 45%
14 epb3 84617 204 14.8 12,7 127 12.7 38%

Ratio of Execution Times

3.5 ; :
Hl MatMult

3r [1 MGS |
>

2 -
>
=

C| 4
(o]
c

I

2 4 6 8 10 12 14 16 18

Problem

Fic. 10. A comparison of execution time for the MatMult and MGS sections with the non-MV
implementation of B-LGMRES(15,1) versus the MV implementation for ten restart cycles for the
17 test problems.

largest nor smallest n or nnz, but they do have the lowest average number of nonze-
ros per row: 4.9 and 4.3, respectively. However, problems 6 and 13 have the highest
average number of nonzeros per row at 178.9 and 59.2, respectively, and do not show
the most improvement in execution time. It is therefore unclear what impact matrix
density (or even nonzero structure) has on the effectiveness of the multivector opti-
mizations in general. The execution time for the MGS section shows an even greater
improvement of MV over non-MV on average. In fact, the MV implementation of
MGS reduces execution time by a factor 2.3 to 2.7 over the non-MV implementation.

For the remainder of this section, we explain reductions in execution time due
to the multivector optimization with data from hardware performance counters that
monitor data movement through the memory hierarchy. Our experimental platform
described at the beginning of Section 4 allows direct access to hardware counters. We
focus on two counters that measure the number of cache lines read from main memory
to the L2 cache and the number of cache lines read from the L2 to the L1 cache since
their measurements correlate strongly with execution time. The raw counts from the
counters are accumulated and converted into Mbytes using a tool we wrote. We refer
to the amount of data moved between main memory and L2 cache as Mbytesy, and
between L2 and the L1 caches as Mbytesr .

To determine the specific source of performance gains for the MV implementation,

24 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

Ratio of Mbytes ,

3 T T
Bl MatMult
25l L IMGS ||
> 2f .
s
2157 .
¢
o
c 1+ -
0
o 2 4 6 8 10 12 14 16 18

Problem

Fia. 11. A comparison of data movement from main memory to L2 cache in the MatMult and
MGS sections for the non-MV implementation of B-LGMRES(15,1) versus the MV implementation
for ten restart cycles for the 17 test problems.

we first examine data movement between main memory and the L2 cache for the non-
MYV and MV implementations. In Figure 11, the y-axis indicates the ratio of Mbytesy
for non-MV to MV for both the MatMult and MGS sections. Bars extending above
one indicate that the non-MV implementation requires greater data movement than
does the MV implementation. In general, the MV implementation has a smaller
Mbytesr, than the non-MV implementation.

For the MatMult section, we expected a factor of two reduction in Mbytesyo for
test problems with a W Shsatnrue significantly larger than the L2 cache. Using (15),
we determined that eight test problems have W Sy at0rwt larger than the 4 Mbytes L2
cache on our test system, and these problems (6 and 11-17) all have ratios from 1.75 to
2.0 in Figure 11. These ratios of reduction in Mbytesr for the MV implementation
correlate well with factor of two reductions in execution time for those problems
seen in Figure 10. In other words, if a reduction in Mbytesro is responsible for an
improvement in execution time, then Figures 10 and 11 should show similar ratios for
each problem.

For the MGS section of the algorithm, we expected M bytesro to be impacted only
if the working set size, W Saras, is significantly greater than the L2 cache size. The
four problems with the largest matrix order are 11, 14, 16 and 17, but only problem
16 has a WSyas (= 5.2) greater than the 4 Mbyte L2 cache size.

However, problem 16 shows a ratio of Mbytesys for non-MV to MV of 1.4 which
is not the largest ratio in Figure 11 and does not correlate with the improvement in
execution time in Figure 10. In fact, other inconsistencies exist in Figure 11 with
respect to Figure 10; several problems show an increase in Mbytesr» for the MGS
and MatMult sections for the MV implementation even though that implementation
is faster. These inconsistencies indicate that a reduction in Mbytesy» does not ac-
curately predict a reduction in execution time for most of the test problems. We
show subsequently that the multivector optimization impacts a different part of the
memory hierarchy for those problems.

We now consider data movement between the L1 and L2 caches. Analogously to

AN EFFICIENT BLOCK VARIANT OF GMRES 25

Ratio of Mbytes

3 T T
Hl MatMult

. L IMGS ||

-]
=

= |
=
‘I:
o

c 4

I

2 4 6 8 10 12 14 16 18

Problem

Fia. 12. A comparison of data movement from L2 cache to L1 cache in the MatMult and MGS
sections for the non-MV implementation of B-LGMRES(15,1) versus the MV implementation for
ten restart cycles for the 17 test problems.

the plot in Figure 11, Figure 12 shows the ratio of Mbytesr, for the non-MV to MV
implementations for both the MatMult and MGS sections of code. For the MatMult
section of code, we expected test problems with W.Syrataruie >> sizeof (L1 cache)
to show a reduction in Mbytesy 1. Test problem 1 has the smallest W Sysat a7t at 978
Kbytes, which is significantly larger than the 16 Kbyte L1 cache. Therefore, because
all of the test problems have a W Syraenrwie larger than the L1 cache size, Figure 12
shows ratios of non-MV to MV that do in fact range from 1.5 to 1.9. Similarly for the
MGS section of code, test problems with W Sy,qs significantly greater than the size
of the L1 cache should also show a reduction in Mbytesy,. Test problem 12 has the
smallest W Sysas at 241 Kbytes, which is also significantly larger than the L1 cache.
Consequently, all of the test problems have ratios of non-MV to MV that range from
1.6 to 2.0. Furthermore, the reduction in Mbytesy; is consistent with the reduction
in execution time seen in Figure 10.

Now we compare reductions in total execution time and data movement for B-
LGMRES. The top panel in Figure 13 clearly illustrates the correlation between reduc-
tion in execution time and total reduction in Mbytesr,. The y-axis in the top panel
in Figure 13 shows the execution time and Mbytesr,; (the left and right bars, respec-
tively) for the non-MV implementation divided by that for the MV implementation.
The closer the two bars are in value for each problem, the stronger the correlation
between the reduction in Mbytesy; and execution time for that problem. While the
relationship between execution time and reduction in data movement between the
L2 and L1 cache is noticeable in the top panel of Figure 13, a similar plot in the
bottom panel of Figure 13 for Mbytesr> does not show such a correlation for most of
the test problems. Therefore, we conclude that a reduction in Mbytesy, is a better
predictor than Mbytesy, for the reduction in execution time achieved by the mul-
tivector optimizations for our test problems. For much larger test problems, where
both W Saretamrwie and W Sygs are larger than the L2 cache size, for example, we
expect that the reduction M bytesro would more strongly correlate to execution time.

The results presented in this section demonstrate that reformulating an iterative

26 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

Correlation Between Total Execution Time and Data Movement

3 T T T T T T T T
Bl Time
DMbytesU
>
S 2 8
>
1t 1
C
0
0 2 4 6 8 10 12 14 16 18
Problem
3 T T
Bl Time
DMbytest
>
S 2r 8
>
=
St 1
c
0

0 2 4 6 8 10 12 14 16 18
Problem

Fia. 13. The upper panel is a comparison of data movement from L2 to L1 cache in the
MatMult and MGS sections for the non-MV implementation of B-LGMRES(15,1) versus the MV
implementation for ten restart cycles for the 17 test problems. The lower panel compares data
movement from main memory to L2 cache.

solver to use multivectors enables an efficient implementation that reduces data move-
ment. An efficient implementation of a block version of an iterative method may be
only marginally more expensive per access of coefficient matrix A than a non-block
version. In other words, our results in this section combined with the results in Figure
6 support the hypothesis that the time to solution is largely dependent on the num-
ber of accesses of A from memory as opposed to the total number of matrix-vector
multiplies.

5. Concluding remarks. In this paper, we explore the feasibility of modifying a
common iterative linear solver method, restarted GMRES, to reduce data movement.
Our investigation led to a block variant of the GMRES method that solves a linear
system with a single right-hand side. This new method, B-LGMRES, lends itself to
a more memory-efficient implementation. In particular, the B-LGMRES algorithm
results from choosing an error approximation vector z; = x; — x;—1 as an additional
right-hand side vector ¢;, as explained in the beginning of Section 3. This choice
mimics a truncated polynomial-preconditioned conjugate gradient method. However,
we recognize that other right-hand side vectors may be more appropriate for particular

AN EFFICIENT BLOCK VARIANT OF GMRES 27

problem classes and could be implemented in the same manner as the B-LGMRES
algorithm.

Although our experimental results show that the B-LGMRES method typically
converges in less time than standard GMRES(m), a thorough understanding of the
convergence behavior of B-LGMRES is an open question. In most cases, B-LGMRES
is effective on problems that also benefit from the augmentation scheme of LGMRES.
Though we do not recommend B-LGMRES as a substitute for preconditioning, it
can be effective both with or without a preconditioner. We find that predicting
the algorithm’s performance is non-trivial due to its dependence on many factors:
problem size (number of nonzeros and matrix order), restart parameter, block size,
matrix properties, preconditioner choices, and machine characteristics.

A unique aspect of this study is the thorough investigation of data movement
through the memory hierarchy during the execution of B-LGMRES. Typically the
hardware performance of an iterative linear solver is not studied in this detail. With B-
LGMRES, however, we evaluated the effectiveness of implementation decisions based
on the measurement of data movement. We found that the use of interlaced data
structures allows a significant reduction in data movement between different levels of
cache. This reduction correlates well with the reduction in execution time, particu-
larly for data movement between the L2 and L1 cache. In addition, the multivector
optimization that benefits B-LGMRES could improve the performance of standard
block GMRES and other block algorithms that solve systems with multiple right-
hand sides.

Because of the gap between processor performance and memory access time, re-
examining traditional matrix algorithms is important to achieving respectable per-
formance on modern architectures. In this paper, we demonstrate the feasibility of
improving performance for a standard algorithm via algorithmic changes together
with an implementation that utilizes innovative programming techniques.

REFERENCES

[1] W. K. ANDERSON, W. D. Gropp, D. K. KAUsHIK, D. E. KEYES, AND B. F. SMITH, Achieving
high sustained performance in an unstructured mesh CFD application, in Proceedings of
Supercomputing '99, 1999. Also published as Mathematics and Computer Science Division,
Argonne National Laboratory, Technical Report ANL/MCS-P776-0899.

[2] S. F. AsuBYy, T. A. MANTEUFFEL, AND P. F. SAYLOR, A tazonomy for conjugate gradient
methods, STAM Journal on Numerical Analysis, 27 (1990), pp. 1542-1568.

[3] A.H.BAKER, E. R. JEssuP, AND T. MANTEUFFEL, A technique for accelerating the convergence
of restarted GMRES, Tech. Report CU-CS-945-03, University of Colorado, Department of
Computer Science, January 2003. Submitted for publication.

. BaLay, K. BuscHELMAN, W. D. Grorpr, D. KausHik, M. KNEPLEY, L. C. MCINNES, B. F.
SMmITH, AND H. ZHANG, PETSc Users Manual, Tech. Report ANL-95/11 - Revision 2.1.5,
Mathematics and Computer Science Division, Argonne National Laboratory, 2003.

. Bavay, K. BuscHELMAN, W. D. GroprpP, D. KausHIK, L. C. McCINNES, AND B. F. SMITH,
PETSc home page. http://www.mcs.anl.gov/petsc, 2001.

. BEnrLiNGg, R. BELL, P. FARreLL, H. HovrrtHorr, F. O’CONNELL, AND W. WEIR, The
POWERY/ Processor Introduction and Tuning Guide, IBM Redbooks, November 2001.

. CARR AND K. KENNEDY, Blocking linear algebra codes for memory hierarchies, in Proceed-
ings of the Fourth STAM Conference on Parallel Processing for Scientific Computing, STAM,
1989, pp. 400—405.

. F. CuaxN AND W. L. WAN, Analysis of projection methods for solving linear systems with
multiple righthand sides, SIAM Journal on Scientific Computing, 18 (1997), pp. 1698-1721.

. CHAPMAN AND Y. SAAD, Deflated and augmented Krylov subspace techniques, Numerical
Linear Algebra with Applications, 4 (1997), pp. 43-66.

=
9]

= =
9] 9]

=
9]

=)
=

=
>

(14]

[15]

[16]

(17]

(20]

(21]

(22]

(34]

(35]

A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

H. DA1, Block bidiagonalization methods for solving nonsymmetric linear systems with multiple
right-hand sides, Tech. Report TR/PA/98/35, CERFACS, Toulouse, France, 1998.

T. Davis, University of Florida sparse matriz collection,
hitp://www.cise.ufl.edu/research/sparse/matrices, 2002.

J. W. DEMMEL, N. J. HIGHAM, AND R. S. SCHREIBER, Block LU factorization, Numerical Linear
Algebra with Applications, 2 (1995), pp. 173-190.

J. DONGARRA, J. DUCROZ, S. HAMMARLING, AND I. DUFF, Algorithm 679: A set of level
8 Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 16
(1990), pp. 18-28.

, A set of level 3 Basic Linear Algebra Subprograms, ACM Transactions on Mathematical
Software, 16 (1990), pp. 1-17.

J. DONGARRA, J. DUCROZ, S. HAMMARLING, AND R. J. HANSON, An extended set of For-
tran Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 14
(1988), pp. 1-17.

J. DONGARRA AND V. EUUKHOUT, Self-adapting numerical software for next generation appli-
cations, tech. report, LAPACK Working Note 157, ICU-UT-02-07, August 2002.

J. J. DONGARRA, D. C. SORENSEN, AND S. J. HAMMARLING, Block reduction of matrices to con-
densed forms for eigenvalue computations, Journal of Computational and Applied Math-
ematics, 27 (1989), pp. 215-227.

A. A. DUBRULLE, Retooling the method of conjugate gradients, Electronic Transactions on
Numerical Analysis, 12 (2001), pp. 216-233.

M. EIERMANN, O. G. ERNST, AND O. SCHNEIDER, Analysis of acceleration strategies for
restarted minimum residual methods, Journal of Computational and Applied Mathematics,
123 (2000), pp. 261-292.

C. FARHAT, A. MACEDO, AND M. LESOINNE, A two-level domain decomposition method for the
iterative solution of high frequency exterior Helmholtz problems, Numerische Mathematik,
85 (2000), pp. 283-308.

M. FIELD, Optimizing a parallel conjugate gradient solver, STAM Journal on Scientific Com-
puting, 19 (1998), pp. 27-37.

B. B. FRAGUELA, R. DOALLA, AND E. L. ZAPATA, Cache misses prediction for high performance
sparse algorithms, in Proceedings of the Fourth International Euro-Par Conference (Euro-
Par ’98), 1998, pp. 224-233. Also published as University of Malaga, Department of
Computer Architecture, Technical Report UNMA-DAC-98/22.

R. W. FREUND AND M. MALHOTRA, A block-QMR algorithm for non-Hermitian linear systems
with multiple right-hand sides, Linear Algebra and its Applications, 254 (1997), pp. 119—
157.

K. GALLIVAN, W. JALBY, U. MEIER, AND A. H. SAMEH, Impact of hierarchical memory sys-
tems on linear algebra algorithm design, The International Journal of Supercomputing
Applications, 2 (1988), pp. 12-48.

W. D. GrorpP, D. K. KavusHIK, D. E. KEYES, AND B. F. SMITH, Toward realistic performance
bounds for implicit CFD codes, in Proceedings of Parallel CFD’99, D. Keyes, A. Ecer,
J. Periaux, N. Satofuka, and P. Fox, eds., Elsevier, 1999, pp. 233—-240.

, High-performance parallel implicit CFD, Parallel Computing, 27 (2001), pp. 337-362.

G. GU AND Z. CA0, A block GMRES method augmented with eigenvectors, Applied Mathe-
matics and Computation, 121 (2001), pp. 278-289.

J. HENNESSEY AND D. PATTERSON, Computer Architecture: A Quantitative Approach, Morgan
Kaufmann, 2nd ed., 1996.

E.-J. Im AND K. YELICK, Model-based memory hierarchy optimizations for sparse matrices, in
Workshop on Profile and Feedback-Directed Compilation, 1998.

E. R. Jessup AND I. C. F. IPSEN, Improving the accuracy of inverse iteration, STAM Journal
on Scientific and Statistical Computing, 13 (1992), pp. 550-571.

A. H. KARP, Bit reversal on uniprocessors, SIAM Review, 38 (1996), pp. 1-26.

R. E. KESSLER, E. J. McLELLAN, AND D. A. WEBB, The alpha 2126/ microprocessor archi-
tecture, in Proceedings of the 1998 IEEE International Conference on Computer Design,
October 1998, pp. 90-95.

M. S. Lam, E. E. ROTHBERG, AND M. E. WoOLF, The cache performance and optimizations of
blocked algorithms, in Proceedings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems, 1991.

G. L1, A block variant of the GMRES method on massively parallel processors, Parallel Com-
puting, 23 (1997), pp. 1005-1019.

J. D. McCALPIN, Memory bandwidth and machine balance in current high performance comput-
ers, IEEE Computer Society Technical Committee on Computer Architecture Newsletter,

AN EFFICIENT BLOCK VARIANT OF GMRES 29

(1995). http://www.cs.virginia.edu/stream.
[36] , STREAM: Sustainable memory bandwidth in high performance computers.
http://www.cs.virginia.edu/stream, 2003.

[37] S. McKEE AND W. WULF, Access order and memory-conscious cache utilization, in First
Symposium on High Performance Computer Architecture (HPCA1), January 1995.

[38] R. MORGAN, GMRES with deflated restarting and multiple right-hand sides. Presentation at
the Seventh Copper Mountain Conference on Iterative Methods, March 2002.

[39] R. B. MORGAN, A restarted GMRES method augmented with eigenvectors, SIAM Journal on
Matrix Analysis and Applications, 16 (1995), pp. 1154-1171.

[40] R. B. MORGAN, GMRES with deflated restarting, SIAM Journal on Scientific Computing, 24
(2002), pp. 20-37.

[41] N. M. NACHITGAL, L. REICHEL, AND L. N. TREFETHEN, A hybrid GMRES algorithm for non-
symmetric linear systems, SIAM Journal of Matrix Analysis and Applications, 13 (1992),
pp. 796-825.

[42] S. NAFFZIGER AND G. HAMMOND, The implementation of the next generation 64b Itanium

microprocessor, in Proceedings of the IEEE International Solid-State Circuits Conference,
vol. 2, 2002, pp. 276-504.

[43] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, MATHEMATICAL AND COMPUTATIONAL
SCIENCES DIVISION, Matriz Market. http://math.nist.gov/MatrixMarket, 2002.

[44] A. A. NIKISHIN AND A. Y. YEREMIN, Variable block CG algorithms for solving large sparse sym-
metric positive definite linear systems on parallel computers, I: general iterative scheme,
SIAM Journal on Matrix Analysis and Applications, 16 (1995), pp. 1135-1153.

. O’LEARY, The block conjugate gradient algorithm and related methods, Linear Algebra and
its Applications, 29 (1980), pp. 293-322.

. PATTERSON, T. ANDERSON, N. CARDWELL, R. FromMm, K. KeEeToN, C. KOZYRAKIS,
R. THOMAS, AND K. YELLICK, A case for intelligent RAM, IEEE Micro, (1997), pp. 34—44.

[45] D
D

[47] A. PINAR AND M. T. HEATH, Improving performance of sparse matriz-vector multiplication, in
Y

[46]

Proceedings of Supercomputing ’99, November 1999.
. SAAD, A flexible inner-outer preconditioned GMRES algorithm, SIAM Journal on Scientific
Computing, 14 (1993), pp. 461-469.

, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996.

, Analysis of augmented Krylov subspace methods, STAM Journal on Matrix Analysis
and Applications, 18 (1997), pp. 435-449.

[51] Y. SAAD AND M. ScHULTZ, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7
(1986), pp. 856-869.

[52] H. SiMON AND A. YEREMIN, A new approach to construction of efficient iterative schemes for
massively parallel applications: variable block CG and BiCG methods and variable block
Arnoldi procedure, in Proceedings of the Sixth SIAM Conference on Parallel Processing for
Scientific Computing, R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R. Petzold, and D. A.
Reed, eds., vol. 1, STAM, 1993, pp. 57—60.

[53] V. SIMONCINI AND E. GALLOPOULOS, An iterative method for nonsymmetric systems with mul-
tiple right-hand sides, SIAM Journal on Scientific Computing, 16 (1995), pp. 917-933.

, Convergence properties of block GMRES and matriz polynomials, Linear Algebra and
its Applications, 247 (1996), pp. 97-119.

[55] C. F. SmitH, A. F. PETERSON, AND R. MITTRA, A conjugatle gradient algorithm for the treat-
ment of multiple incident electromagnetic fields, IEEE Transactions on Antennas and Prop-
agation, 37 (1989), pp. 1490-1493.

[56] S. ToLEDO, Improving the memory-system performance of sparse-matriz vector multiplication,
IBM Journal of Research and Development, 41 (1997), pp. 711-725.

[57] B. VITAL, Etude de quelques méthodes de résolution de problémes linéaires de grande taille sur
multi-processeur, PhD thesis, Université de Rennes I, Rennes, 1990.

[58] R. Vupoc, J. DEMMEL, K. A. YELICK, S. KAMIL, R. NISHTALA, AND B. LEE, Performance opti-
mizations and bounds for sparse matriz-vector multiply, in Proceedings of Supercomputing
02, 2002.

[59] W. A. WULF AND S. A. McKEE, Hitting the wall: Implications of the obvious, Tech. Report
(CS-94-48, University of Virginia, Department of Computer Science, 1994.

