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1 Introduction

Information local to any one processor is insufficient to monitor the overall

progress of most distributed computations. Typically, a second distributed

computation for detecting termination of the main computation is necessary.

In order to be a useful computational tool, the termination detection routine

must operate concurrently with the main computation, adding minimal over-

head, and it must promptly and correctly detect termination when it occurs

[13]. In this paper, we present a new algorithm for detecting the termination of

a parallel computation on distributed-memory MIMD computers that satisfies

all of those criteria.

A variety of termination detection algorithms have been devised. See, for

example, [1, 2, 5, 6, 7, 9, 10, 8, 12, 13, 14]. Of these, the algorithm presented

by Sinha, Kale, and Ramkumar [13] (henceforth, the SKR algorithm) is unique
∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Box

808 L-551, Livermore, CA 94551. The work of A.H. Baker was supported by the National
Science Foundation under grant no. ACR-93-57812 while in residence at the University of
Colorado. Portions of this work were performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

†1 Cyclotron Rd., Mail Stop 50F, Lawrence Berkeley Lab, Berkeley, CA 94720. The work of
S. Crivelli was supported by the National Science Foundation under grant no. ACR-93-57812
and by the Department of Energy under grant no. DE-FG03-97ER25325.

‡Department of Computer Science, University of Colorado, Boulder, CO 80309-0430. The
work of E.R. Jessup was supported by the National Science Foundation under grant no. ACR-
93-57812 and by the Department of Energy under grant no. DE-FG03-97ER25325.

1



in its ability to adapt to the load conditions of the system on which it runs,

thereby minimizing the impact of termination detection on performance. Be-

cause their algorithm also detects termination quickly, we consider it to be the

most efficient practical algorithm presently available. The termination detection

algorithm presented here was developed for use in the PMESC programming li-

brary for distributed-memory MIMD computers [3, 4]. Like the SKR algorithm,

our algorithm adapts to system loads and imposes little overhead. Also like the

SKR algorithm, ours is tree-based, and it does not depend on any assumptions

about the physical interconnection topology of the processors or the specifics of

the distributed computation. In addition, our algorithm is easier to implement

and requires only half as many tree traverses as does the SKR algorithm.

This paper is organized as follows. In section 2, we define our computational

model. In section 3, we review the SKR algorithm. We introduce our new

algorithm in section 4, and prove its correctness in section 5. We discuss its

efficiency and present experimental results in section 6.

2 Computational Model

We assume a distributed-memory computer with each processor assigned a dif-

ferent portion of the original problem. Our model of execution is distributed,

asynchronous, and dynamic with one process per processor. The processors

share computational tasks via message passing.

We distinguish between two concurrent computations: main and termina-

tion. The main computation solves the original problem. The termination

computation detects the completion of the main computation on all processors.

The main computation is further characterized as follows:

• Processors are either active or passive. A processor is active when it is

working to complete its assigned computational tasks. Otherwise, it is

passive.

• Only active processors can send tasks to other processors.

• Both active and passive processors can receive tasks from other processors.

• An active processor becomes passive only when it finishes its assigned

computational tasks.
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• A passive processor becomes active only if it receives tasks from another

processor.

Messages used by the termination algorithm are called control messages to

distinguish them from the primary messages used by the main computation to

transfer tasks or data. Primary messages may change the status of the receiving

processor from passive to active. Control messages cannot change the status of

any processor.

The main computation has terminated if and only if

• All processors are passive and

• There are no primary messages left in transit.

A termination detection algorithm must detect both termination conditions.

3 The SKR Algorithm

The SKR algorithm [13] is a wave-type algorithm that requires the use of a vir-

tual spanning tree for termination messages, but its description is not dependent

on the properties of the physical underlying network topology. The algorithm

is asymmetric since a root processor is identified. Neither FIFO communication

channels nor synchronous communication are required.

The SKR algorithm does not interfere with the main computation. Proces-

sors do not handle the control messages until they are passive, and, in a busy

system, few control messages are generated. As a result, the SKR algorithm

is very efficient for the computational model described in the previous section.

Further discussion of efficiency follows in section 6.

The SKR algorithm detects termination by counting the number of primary

messages sent and received. It is organized in two phases and uses three types of

termination messages (initialization, idle, and activity). Communication follows

the links of a virtual spanning tree. In the first phase of the algorithm, when

a leaf processor becomes passive, it sends a message to its parent in the tree

containing the numbers of primary messages it has sent and received at that

time. Once an internal processor becomes passive, it waits for idle messages
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from all of its children, adds the received counts to its own count, and forwards

the result as an idle message to its parent.

The total counts in any processor represent the number of primary messages

sent and received so far by all processors in the subtree rooted at that processor.

Thus, if the total counts received by the root of the spanning tree are not equal,

termination cannot have occurred, and the root broadcasts a signal to the leaves

to reinitiate the first phase. However, if the root’s totals are equal, termination

may have occurred. Thus, the root broadcasts a signal to the leaves to initiate

the second phase. The second phase detects whether any messages are still in

transit even though the totals at the root match.

In the second phase, the processors, beginning at the leaves, send activity

messages containing their updated counts of primary messages sent and received

up the tree. Activity messages are combined in the same way as idle messages

are in the first phase. When the root has received activity messages from all of

its children, it compares the old totals of messages sent and received with the

new ones. If these values are the same, there has been no activity in the system.

In this case, the root reports termination. Otherwise, it restarts phase one with

a broadcast to the leaves.

Because the progress of this termination detection algorithm is controlled by

the root, it requires the broadcasting of a message from the root to the other

processors to initiate each of the phases. The SKR algorithm therefore takes

four traverses of the spanning tree to detect termination. In the next section,

we present a new termination detection algorithm that is in the same class as

the SKR algorithm. The new algorithm, however, takes at most two traverses

of the spanning tree to detect termination after it occurs.

4 The New Algorithm

The new termination detection algorithm runs on each of the processors in the

distributed-memory computer. All communication in the termination procedure

takes place up and down a virtual spanning tree of processors. Pseudo-code for

the termination algorithm is given in Figure 1.

The algorithm requires one phase and only two types of control messages:

down and up. Down messages traverse the tree downwards carrying only the
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S local count of primary messages sent

R local count of primary messages received

T local count of sends minus receives

accum count accumulated count of sends minus receives from children

children number of children that have sent termination messages

all children total number of children that belong to a processor

sweep # number of the termination sweep

last msg sweep # greatest sweep # attached to work received by a processor

Downward traverse
if (not root) {

check for down message containing a sweep # from parent; }
if (not leaf) {

send down message containing sweep # to children; }
else { \* processor is a leaf *\

initiate Upward traverse:
T = S - R;
send up message containing T and sweep # (from down message) to parent; }

return to main computation;

Upward traverse
if (not leaf) {

check for up messages from children containing T and sweep #;
if (message received) {

accum count = T (received) + accum count;
children++; }

if (children = all children) {
if (last msg sweep # > local sweep #) {

T = INFINITY; }
else {

T = S - R; }
accum count = T + accum count;
if (not root) {

send up message containing accum count and sweep # to parent;
set local sweep # = sweep # in up message just sent; }

else { \* root processor *\
if (accum count = 0) {

broadcast termination; }
else {

go back to Downward traverse; } } } }
return to main computation

Figure 1: Pseudo-code for the termination detection algorithm.
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number of the termination sweep (called a sweep #) they belong to. Up mes-

sages traverse the tree upwards and prompt each processor to evaluate the num-

ber of primary messages it has sent minus the number of primary messages it

has received. Up messages carry a sweep # as well as an accumulated count of

sends minus receives from processors below it in the tree.

The downward traverse starts at the root. When the root processor becomes

passive, it sends a down message to its children. The sweep # included in

the down message is assigned by the root. The first time the root initiates

a downward traverse it assigns the down messages sweep # = 1. The root

increments the sweep # by one for each subsequent downward traverse that

it initiates so that each termination sweep has a unique sweep #. When any

processor other than the root becomes passive, it checks to see whether it has

received a down message from its parent. If so and if the processor is not a leaf,

it forwards the sweep # just received to its children as a down message. If the

processor is a leaf, it evaluates the difference between the number of primary

messages it has sent and received until that time. The leaf processor then sends

its message count and the sweep # contained in the down message as an up

message to its parent in the tree. In this way, the leaf processors initiate the

upward traverse.

In addition to being attached to the control messages, a termination sweep

number is attached to all primary messages. Each processor keeps a local

quantity called sweep #, which is initialized to zero. A processor attaches

its local sweep # value to all primary messages it sends. A second quantity

kept by each processor is last msg sweep # (also initialized to zero). Each

time a processor receives a primary message from another processor, it checks

to see if the sweep # included with the primary message is greater that its

last msg sweep #. If so, the processor updates its last msg sweep # to equal

the sweep # included in the primary message. In this way, the local last msg sweep #

kept by each processor reflects the greatest sweep # value attached to any pri-

mary message it has received so far.

Although every processor must be passive at some point during the down-

ward traverse, completion of the downward traverse does not signal termination

of the main computation: a processor may still receive a primary message and
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resume work after sending its down or up messages. The purpose of the up-

ward traverse is to detect any primary messages that were in transit during the

downward traverse. Note that the upward traverse can begin at a leaf processor

before the downward traverse has reached all processors.

An internal processor collects up messages containing local message counts

from all of its children. It forms an accumulated message count equal to the sum

of its children’s local message counts. When the internal processor has received

up messages from all of its children, it evaluates its own message count. It then

checks to see if it previously received any primary messages from processors

that had completed the current termination sweep (i.e., sent both down and up

messages in that sweep). Such a message was received if the checking processor

has its last msg sweep # greater than its sweep #, requiring it to reset its

message count to INFINITY. The processor then adds its own local message

count to the accumulated message count and sends the result up to its parent in

the tree. Immediately after an internal or leaf processor sends an up message, it

updates its local sweep # to equal the value of the sweep # in the up message

just sent. In this way, the local sweep # kept by each processor reflects the

last termination sweep it completed. Note that an internal processor must be

passive before it checks for an up message.

When the root receives up messages from all of its children, it determines

whether or not termination has occurred. The root forms an accumulated mes-

sage count (including its own local message count) in the same manner as the

internal processors. If the value of its accumulated count is zero, then all the

processors have finished, and the root broadcasts a termination order. Oth-

erwise, termination has not occurred and the main computation continues on

all processors until the root becomes passive and reinitiates the termination

procedure.

The complexity of this algorithm is half that of the SKR algorithm pre-

sented in [13] because this algorithm requires only two traverses of the tree to

detect termination. We do note, however, that for an application with fully syn-

chronous communication, the second phase (requiring 2 traverses) of the SKR

algorithm is not required. In both algorithms, one additional traverse is required

for the root to broadcast the termination signal to all of the other processors

after termination is detected.
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A termination algorithm is fault tolerant if it correctly detects termination

despite faults that occur at a processor or in the network during the computa-

tion. We note that neither our new algorithm nor the SKR algorithm is fault

tolerant.

5 Proof of Correctness of the New Algorithm

In this section, we denote the set of processors in the distributed-memory com-

puter by P. Let sm denote the sending of primary message m, and let rm denote

the receiving of the message. We identify the following sets:

Spi
= {sm, such that m is a message sent by pi}, S = {Spi

, pi ∈ P},
Rpi = {rm, such that m is a message received by pi}, and R = {Rpi , pi ∈
P}.
Let #S and #R be the cardinalities of S and R and T = #S −#R.

Theorem 1. The termination detection algorithm does not detect false ter-

mination.

Proof. The proof is by contradiction. Assume that the termination proce-

dure detects false termination. In that case, the procedure has reached the root

of the tree with T = 0 but termination has not yet occurred. Assume that the

termination sweep that found T = 0 had sweep # = b. According to the defi-

nition of termination given in section 2, if termination has not occurred then at

least one of the following is true: (∃ pi ∈ P such that pi is active) or (∃ a message m such that m is in transit).

First assume that pi is active after termination is detected. Then pi changed

from passive to active after it was visited during the upward traverse, and its

local sweep # = b. A passive processor can become active only if it receives a

primary message from another processor. So pi necessarily received a primary

message γ from another active processor pj . Without loss of generality, we can

assume that pj had not yet been visited by the upward traverse when it sent

the message although it may or may not have been visited by the downward

traverse. (Any set of processors that are busy below the wavefront of the upward

traverse must ultimately have been restarted by a message from a busy processor

above the wavefront.) Since pi is now active it could either (a) send no primary

messages or (b) send a primary messsage to another processor. In case (a),

#S 6= #R since the sending of γ by pj was counted in the termination sweep but
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the receiving of γ was not (γ was received by pi after the up travese). Therefore,

T 6= 0. In case (b), pi sends a primary message β containing sweep # = b to

another processor pk. Processor pk must be in either of the following 2 stages

of the termination procedure:

1. pk has not been visited by the up traverse.

2. pk has been visited by the up traverse (like pi)

If item 1 is true, then pk’s sweep # < b since it has not completed the upward

traverse for this sweep, but its last msg sweep # = b because it received β.

Therefore, pk’s up message will contain T = INFINITY , and T cannot be 0

upon completion. If item 2 is true, the same situation exists for pk that was

just described for pi. Processor pk is now active and can either (a) send no

primary messages or (b) send a primary messsage to another processor. In case

(a), T 6= 0 again because the sending of γ was counted, but the receiving of γ

and the sending and receiving of β were not. Considering case (b) again, note

that at this point messages could be sent any number of times to processors that

have already completed the sweep, and T 6= 0 upon completion of the sweep.

In this case, the only way to arrive at #S = #R would be to have another

receive counted by a processor that has not completed the upward traverse.

Assume a primary message is sent by pk (or any other active processor that has

completed the current sweep) to any processor pe that has not completed the

upward traverse. Processor pe will set T = INFINITY when it sends its up

message since its last msg sweep # will be greater than its sweep #. Thus, our

first assumption is false.

Now assume that there exists at least one message in transit at the comple-

tion of the termination sweep. Since T = 0, then by the definitions of S and R

there exist at least two messages in transit, m1 and m2, such that the sending

of m1 and the receiving of m2 have been counted but the receiving of m1 and

the sending of m2 have not. Thus, there are messages m1 and m2 such that

(sm2 3 S and rm2 ∈ R) and (sm1 ∈ S and rm1 3 R). Let pk be the processor

that sends m2 and pj be the processor that receives m2. Because sm2 is not in S

then m2 was sent after pk was visited in the upward traverse. Note that m2 had

to contain sweep # = b since the sending node pk had already been visited by
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the upward traverse, making pj ’s last msg sweep # ≥ b. Since rm2 is in R then

it occurred before processor pj was visited by the upward traverse. Therefore,

when the upward traverse visits processor pj , pj will have last msg sweep # ≥
b and sweep # < b, so T = INFINITY . Thus, our second assumption is also

false. �
We have proved that when termination is detected the system has termi-

nated.

6 Efficiency of the New Algorithm

The efficiency of a termination detection algorithm has traditionally been equated

with the number of control messages the algorithm creates. In particular, an al-

gorithm is classified as “message optimal” if it uses a number of control messages

on the order of the number of primary messages sent by the main computation

[8]. We note, however, that the number of control messages is not a meaningful

metric when control messages are handled only by passive processors. In this

case, a better measure of efficiency is the overall impact the termination de-

tection computation has on the performance of the main computation. Thus,

an efficient termination detection algorithm must not interfere with the main

computation. Furthermore, it must be able to detect both of the termination

conditions identified in section 2 and communicate them to all of the processors

quickly [13]. The SKR algorithm satisfies both of these efficiency requirements

and typically requires far fewer control messages than the message optimality

bound would dictate [13]. In this section, we present experimental results to

demonstrate that our algorithm is likewise efficient in practice.

We examine a problem contrived to isolate the impact of our termination

detection routine in a roughly worst case scenario. The experiments were carried

out on the ASCI Blue-Pacific machine (an IBM RS/6000 system) at Livermore

National Laboratory. Test programs use Fortran (mpxlf -O), and MPI [11] is

used for message passing.

In this problem, all processors begin by completing one short-lived task.

When the root completes its task, it sends work to a given leaf processor and

becomes passive. When that leaf processor completes its task, it sends work

to the root and becomes passive itself. This cycle repeats five times. In the
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Number of
Processors Dynamic Static Ratio

8 4.750± 0.012 4.741± 0.010 1.001
16 4.379± 0.008 4.372± 0.008 1.001
32 4.508± 0.009 4.507± 0.018 1.000
64 4.404± 0.010 4.400± 0.009 1.001
128 4.486± 0.007 4.476± 0.014 1.002
256 4.629± 0.007 4.620± 0.010 1.002
512 4.748± 0.087 4.737± 0.066 1.002

Table 1: Total execution times (in seconds) with and without termination de-
tection on ASCII Blue-Pacific. Times reported are averages and standard devi-
ations of times for 250 runs.

static implementation, the root and one leaf processor terminate computation

after the fifth cycle. The remaining processors terminate computation upon

completing the preliminary task. Thus, no termination detection routine is ac-

tually needed. For purposes of comparison, however, we have written a dynamic

implementation that follows the same steps but also employs our termination

detection algorithm. The expected impact of termination detection on this prob-

lem is high as the runtime is dominated by the communication cycles between

root and leaf, and the root processor initiates a new termination detection pro-

cedure every time it changes from active to passive. Nonetheless, the results

reported in Table 1 show that adding termination detection has little effect on

the total runtime, even in this worse case. The times reported in the table are

the averages and standard deviations of the times recorded for 250 runs of the

program. As the nonzero standard deviations show, differences in system load,

numbers of simultaneous users, and other operational factors cause fluctuations

in experimental timings. These ratios of dynamic to static times demonstrate

that the termination detection routine imposes an overhead smaller than the

experimental uncertainty.
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