17 research outputs found

    Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia

    Get PDF
    Mesenchymal stem cells (MSCs) are a promising clinical therapy for ischemic stroke. However, critical parameters, such as the most effective administration route, remain unclear. Intravenous (i.v.) and intraarterial (i.a.) delivery routes have yielded varied outcomes across studies, potentially due to the unknown MSCs distribution. We investigated whether MSCs reached the brain following i.a. or i.v. administration after transient cerebral ischemia in rats, and evaluated the therapeutic effects of both routes. MSCs were labeled with dextran-coated superparamagnetic nanoparticles for magnetic resonance imaging (MRI) cell tracking, transmission electron microscopy and immunohistological analysis. MSCs were found in the brain following i.a. but not i.v. administration. However, the i.a. route increased the risk of cerebral lesions and did not improve functional recovery. The i.v. delivery is safe but MCS do not reach the brain tissue, implying that treatment benefits observed for this route are not attributable to brain MCS engrafting after stroke.This study has been partially supported by grants from Axencia Galega de Innovación (Xunta de Galicia), the Instituto de Salud Carlos III (PI13/00292; PI14/01879), the Spanish Research Network on Cerebrovascular Diseases RETICS-INVICTUS (RD12/0014), Xunta de Galicia (Consellería Educación GRC2014/027), the European Commission program FEDER and Promoting Active Ageing program: Functional Nanostructures For Alzheimer’s Disease At Ultra-Early Stages” (Pana_686009), a Research and Innovation Project, funded within the EU Horizon 2020 Programme”. Furthermore, this study was also co-funded within the POCTEP (Operational Programme for Cross-border Cooperation Spain-Portugal) program (0681_INVENNTA_1_E), co-financed by the ERDF (European Regional Development Fund). T. Sobrino (CP12/03121) and F. Campos (CP14/00154) are recipients of a research contract from Miguel Servet Program of Instituto de Salud Carlos III. Finally, P. Taboada thanks Mineco and Xunta de Galicia for funding through projects MAT2013-40971-R and EM2013-046, respectively. J Trekker is the recipient of an innovation grant from the IWT-VlaanderenS

    A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics : the case of NPC1 deficiency

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions

    Monitoring the bystander killing effect of human multipotent stem cells for treatment of malignant brain tumors

    No full text
    Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683) in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI) and magnetic resonance imaging (MRI). Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1) outliers can be detected earlier, (2) GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3) a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents.status: publishe

    Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors

    No full text
    Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683) in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI) and magnetic resonance imaging (MRI). Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1) outliers can be detected earlier, (2) GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3) a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents

    Magnetic electrospun fibers for cancer therapy

    No full text
    Iron oxide nanoparticles (IONPs) for magnetic hyperthermia in cancer treatment have recently gained substantial interest. Unfortunately, the use of free IONPs still faces major challenges such as poor tumor targetability, high variability in the amount of IONPs taken up by the tumor and the IONP leakage from dead cancer cells into the surrounding healthy tissues. The present work reports on electrospun fiber webs, heavily loaded with 50 nm sized IONPs. The high loading capacity of the fibers enables significant heating of the environment upon applying an alternating magnetic field. Furthermore, magnetic fibers can be repeatedly heated without loss of heating capacity or release of IONPs. Upon functionalization of the fiber surface with collagen, human SKOV-3 ovarian cancer cells attached well to the fibers. Applying an alternating magnetic field during 10 minutes to the fiber webs killed all fiber-associated cancer cells. Killing the cells using this method seemed more efficient compared to the use of a warm water bath. As the fiber webs can be i) loaded with a well-controlled amount of IONPs and ii) localized in the body by Magnetic Resonance Imaging, magnetic electrospun fibers may become promising materials for a highly reproducible (repeated) heating of cancer tissues in vivo

    Magnetic Electrospun Fibers for Cancer Therapy

    No full text
    Iron oxide nanoparticles (IONPs) for magnetic hyperthermia in cancer treatment have recently gained substantial interest. Unfortunately, the use of free IONPs still faces major challenges such as poor tumor targetability, high variability in the amount of IONPs taken up by the tumor and the IONP leakage from dead cancer cells into the surrounding healthy tissues. The present work reports on electrospun fiber webs, heavily loaded with 50 nm sized IONPs. The high loading capacity of the fibers enables significant heating of the environment upon applying an alternating magnetic field. Furthermore, magnetic fibers can be repeatedly heated without loss of heating capacity or release of IONPs. Upon functionalization of the fiber surface with collagen, human SKOV-3 ovarian cancer cells attached well to the fibers. Applying an alternating magnetic field during 10 minutes to the fiber webs killed all fiber-associated cancer cells. Killing the cells using this method seemed more efficient compared to the use of a warm water bath. As the fiber webs can be i) loaded with a well-controlled amount of IONPs and ii) localized in the body by Magnetic Resonance Imaging, magnetic electrospun fibers may become promising materials for a highly reproducible (repeated) heating of cancer tissues in vivo. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.status: publishe

    Synthetic Antiferromagnetic Gold Nanoparticles as Bimodal Contrast Agents in MRI and CT—An Experimental In Vitro and In Vivo Study

    No full text
    The use of multimodal contrast agents can potentially overcome the intrinsic limitations of individual imaging methods. We have validated synthetic antiferromagnetic nanoparticles (SAF-NPs) as bimodal contrast agents for in vitro cell labeling and in vivo cell tracking using magnetic resonance imaging (MRI) and computed tomography (CT). SAF-NP-labeled cells showed high contrast in MRI phantom studies (r2* = 712 s−1 mM−1), while pelleted cells showed clear contrast enhancement in CT. After intravenous SAF-NP injection, nanoparticles accumulated in the liver and spleen, as visualized in vivo by significant MRI contrast enhancement. Intravenous injection of SAF-NP-labeled cells resulted in cell accumulation in the lungs, which was clearly detectable by using CT but not by using MRI. SAF-NPs proved to be very efficient cell labeling agents for complementary MRI- and CT-based cell tracking. Bimodal monitoring of SAF-NP labeled cells is in particular of interest for applications where the applied imaging methods are not able to visualize the particles and/or cells in all organs

    Easy and efficient cell tagging with block copolymers based contrast agents for sensitive MRI detection in vivo

    No full text
    Superparamagnetic iron oxide nanoparticles (MNPs) together with magnetic resonance imaging (MRI) are the preferred tools for monitoring the fate and biodistribution of administered cells in stem cell therapy studies. Commercial MNPs need transfection agents and long incubation times for sufficient cell labeling and further in vivo cell detection. In this work, we have synthesized MNPs coated with pluronic F127 and tetronic 908, and validated their applicability as contrast agents for MRI cell detection on two different cell types: rat mesenchymal stem cells (MSCs) and multipotent neural progenitor cell line from mice (C17.2). No transfection agent was needed for a complete MNP internalization, and the uptake was only dependent on MNP concentration in medium and limited on the incubation time. By combining in vivo MRI and ex vivo histology microscopy, we have demonstrated the MRI signal detected corresponded exclusively to labeled cells and not to free particles. Pluronic F127- and tetronic 908-coated MNPs represent promising contrast agents for stem cell tracking due to their ease of use in preparation, their efficiency for cell labeling, and their high sensitivity for in vivo cell detection.status: publishe

    Assessment of bystander killing-mediated therapy of malignant brain tumors using a multimodal imaging approach

    Get PDF
    INTRODUCTION: In this study, we planned to assess if adult stem cell-based suicide gene therapy can efficiently eliminate glioblastoma cells in vivo. We investigated the therapeutic potential of mouse Oct4(-) bone marrow multipotent adult progenitor cells (mOct4(-) BM-MAPCs) in a mouse glioblastoma model, guided by multimodal in vivo imaging methods to identify therapeutic windows. METHODS: Magnetic resonance imaging (MRI) of animals, wherein 5 × 10(5) syngeneic enhanced green fluorescent protein-firefly luciferase-herpes simplex virus thymidine kinase (eGFP-fLuc-HSV-TK) expressing and superparamagnetic iron oxide nanoparticle labeled (1 % or 10 %) mOct4(-) BM-MAPCs were grafted in glioblastoma (GL261)-bearing animals, showed that labeled mOct4(-) BM-MAPCs were located in and in close proximity to the tumor. Subsequently, ganciclovir (GCV) treatment was commenced and the fate of both the MAPCs and the tumor were followed by multimodal imaging (MRI and bioluminescence imaging). RESULTS: In the majority of GCV-treated, but not phosphate-buffered saline-treated animals, a significant difference was found in mOct4(-) BM-MAPC viability and tumor size at the end of treatment. Noteworthy, in some phosphate-buffered saline-treated animals (33 %), a significant decrease in tumor size was seen compared to sham-operated animals, which could potentially also be caused by a synergistic effect of the immune-modulatory stem cells. CONCLUSIONS: Suicide gene therapy using mOct4(-) BM-MAPCs as cellular carriers was effective in reducing the tumor size in the majority of the GCV-treated animals leading to a longer progression-free survival compared to sham-operated animals. This treatment could be followed and guided noninvasively in vivo by MRI and bioluminescence imaging. Noninvasive imaging is of particular interest for a rapid and efficient validation of stem cell-based therapeutic approaches for glioblastoma and hereby contributes to a better understanding and optimization of a promising therapeutic approach for glioblastoma patients.status: publishe
    corecore