3,313 research outputs found

    Reserve Size And Fragmentation Alter Community Assembly, Diversity, And Dynamics

    Get PDF
    Researchers have disputed whether a single large habitat reserve will support more species than many small reserves. However, relatively little is known from a theoretical perspective about how reserve size affects competitive communities structured by spatial abiotic gradients. We investigate how reserve size affects theoretical communities whose assembly is governed by dispersal limitation, abiotic niche differentiation, and source-sink dynamics. Simulations were conducted with varying scales of dispersal across landscapes with variable environmental spatial autocorrelation. Landscapes were inhabited by simulated trees with seedling and adult stages. For a fixed total area in reserves, we found that small reserve systems increased the distance between environments dominated by different species, diminishing the effects of source-sink dynamics. As reserve size decreased, environmental limitations to community assembly became stronger, species richness decreased, and richness increased. When dispersal occurred across short distances, a large reserve strategy caused greater stochastic community variation, greater richness, and lower richness than in small reserve systems. We found that reserve size variation trades off between preserving different aspects of natural communities, including diversity versus diversity. Optimal reserve size will depend on the importance of source-sink dynamics and the value placed on different characteristics of natural communities. Anthropogenic changes to the size and separation of remnant habitats can have far-reaching effects on community structure and assembly.Integrative Biolog

    The Band Excitation Method in Scanning Probe Microscopy for Rapid Mapping of Energy Dissipation on the Nanoscale

    Full text link
    Mapping energy transformation pathways and dissipation on the nanoscale and understanding the role of local structure on dissipative behavior is a challenge for imaging in areas ranging from electronics and information technologies to efficient energy production. Here we develop a novel Scanning Probe Microscopy (SPM) technique in which the cantilever is excited and the response is recorded over a band of frequencies simultaneously rather than at a single frequency as in conventional SPMs. This band excitation (BE) SPM allows very rapid acquisition of the full frequency response at each point (i.e. transfer function) in an image and in particular enables the direct measurement of energy dissipation through the determination of the Q-factor of the cantilever-sample system. The BE method is demonstrated for force-distance and voltage spectroscopies and for magnetic dissipation imaging with sensitivity close to the thermomechanical limit. The applicability of BE for various SPMs is analyzed, and the method is expected to be universally applicable to all ambient and liquid SPMs.Comment: 32 pages, 9 figures, accepted for publication in Nanotechnolog

    Structure-Guided Recombination Creates an Artificial Family of Cytochromes P450

    Get PDF
    Creating artificial protein families affords new opportunities to explore the determinants of structure and biological function free from many of the constraints of natural selection. We have created an artificial family comprising ~3,000 P450 heme proteins that correctly fold and incorporate a heme cofactor by recombining three cytochromes P450 at seven crossover locations chosen to minimize structural disruption. Members of this protein family differ from any known sequence at an average of 72 and by as many as 109 amino acids. Most (>73%) of the properly folded chimeric P450 heme proteins are catalytically active peroxygenases; some are more thermostable than the parent proteins. A multiple sequence alignment of 955 chimeras, including both folded and not, is a valuable resource for sequence-structure-function studies. Logistic regression analysis of the multiple sequence alignment identifies key structural contributions to cytochrome P450 heme incorporation and peroxygenase activity and suggests possible structural differences between parents CYP102A1 and CYP102A2

    Conceptual Design Shop: A Tool for Rapid Airframe Structural Modeling

    Get PDF
    This paper presents an innovative approach to rapidly generate finite element (FE) models of a complete airframe for a variety of airframe concepts. The current implementation of this software includes all airfoil surfaces and the fuselage, and is limited to FE modeling of low-wing designs with T-tails or twin tails. This tool, called the Conceptual Design Shop (CDS), was developed using the PATRAN command language (PCL) within the PATRAN finite element modeling software. CDS is an attempt to fill a gap in current finite element modeling software to automatically connect wings and tails to the fuselage in airframe models. The CDS software is demonstrated on two airframe designs: a generic transport aircraft and an advanced aircraft design with a boundary-layer ingestion engine

    Update on the Development of a Flutter Analysis Capability for Unconventional Aircraft Concepts Using HCDstruct

    Get PDF
    Following years of development, the Higher-fidelity Conceptual Design and structural optimization (HCDstruct) tool is being extended to support dynamic aeroservoelastic analysis and structural optimization for advanced aircraft concepts. These required enhancements include: the development of an aerodynamic matching routine for correcting Nastrans doublet-lattice method aerodynamics; the implementation of control surface structural models; and the implementation of support for Nastrans flutter solution sequence (SOL 145). This paper presents an update on the implementation of generalized control surface structural models and support for Nastran SOL 145

    Aeroelastic Optimization of Generalized Tube and Wing Aircraft Concepts Using HCDstruct Version 2.0

    Get PDF
    Major enhancements were made to the Higher-fidelity Conceptual Design and structural optimization (HCDstruct) tool developed at NASA Langley Research Center (LaRC). Whereas previous versions were limited to hybrid wing body (HWB) configurations, the current version of HCDstruct now supports the analysis of generalized tube and wing (TW) aircraft concepts. Along with significantly enhanced user input options for all air- craft configurations, these enhancements represent HCDstruct version 2.0. Validation was performed using a Boeing 737-200 aircraft model, for which primary structure weight estimates agreed well with available data. Additionally, preliminary analysis of the NASA D8 (ND8) aircraft concept was performed, highlighting several new features of the tool

    Growth, Condition, and Trophic Relations of Stocked Trout in Southern Appalachian Mountain Streams

    Get PDF
    Stream trout fisheries are among the most popular and valuable in the United States, but many are dependent on hatcheries to sustain fishing and harvest. Thus, understanding the ecology of hatchery‐reared trout stocked in natural environments is fundamental to management. We evaluated the growth, condition, and trophic relations of Brook Trout Salvelinus fontinalis, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss that were stocked in southern Appalachian Mountain streams in western North Carolina. Stocked and wild (naturalized) trout were sampled over time (monthly; September 2012–June 2013) to compare condition and diet composition and to evaluate temporal dynamics of trophic position with stable isotope analysis. Relative weights (Wr) of stocked trout were inversely associated with their stream residence time but were consistently higher than those of wild trout. Weight loss of harvested stocked trout was similar among species and sizes, but fish stocked earlier lost more weight. Overall, 40% of 141 stomachs from stocked trout were empty compared to 15% of wild trout stomachs (N = 26). We identified a much higher rate of piscivory in wild trout (18 times that of stocked trout), and wild trout were 4.3 times more likely to consume gastropods relative to stocked trout. Hatchery‐reared trout were isotopically similar to co‐occurring wild fish for both δ13C and δ15N values but were less variable than wild trout. Differences in sulfur isotope ratios (δ34S) between wild and hatchery‐reared trout indicated that the diets of wild fish were enriched in δ34S relative to the diets of hatchery‐reared fish. Although hatcheryreared trout consumed prey items similar to those of wild fish, differences in consumption or behavior (e.g., reduced feeding) may have resulted in lower condition and negative growth. These findings provide critical insight on the trophic dynamics of stocked trout and may assist in developing and enhancing stream trout fisheries

    Probing the role of single defects on the thermodynamics of electric-field induced phase transitions

    Full text link
    The kinetics and thermodynamics of first order transitions is universally controlled by defects that act as nucleation sites and pinning centers. Here we demonstrate that defect-domain interactions during polarization reversal processes in ferroelectric materials result in a pronounced fine structure in electromechanical hysteresis loops. Spatially-resolved imaging of a single defect center in multiferroic BiFeO3 thin film is achieved, and the defect size and built-in field are determined self-consistently from the single-point spectroscopic measurements and spatially-resolved images. This methodology is universal and can be applied to other reversible bias-induced transitions including electrochemical reactions.Comment: 34 pages,4 figures, high quality figures are available upon request, submitted to Phys. Rev. Let

    Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    Get PDF
    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients
    corecore