134 research outputs found

    Analysis of the In Vivo Transcriptome of Bordetella pertussis during Infection of Mice

    Get PDF
    Bordetella pertussis causes the disease whooping cough through coordinated control of virulence factors by the Bordetella virulence gene system. Microarrays and, more recently, RNA sequencing (RNA-seq) have been used to describe in vitro gene expression profiles of B. pertussis and other pathogens. In previous studies, we have analyzed the in vitro gene expression profiles of B. pertussis, and we hypothesize that the infection transcriptome profile in vivo is significantly different from that under laboratory growth conditions. To study the infection transcriptome of B. pertussis, we developed a simple filtration technique for isolation of bacteria from infected lungs. The work flow involves filtering the bacteria out of the lung homogenate using a 5-μm-pore-size syringe filter. The captured bacteria are then lysed to isolate RNA for Illumina library preparation and RNA-seq analysis. Upon comparing the in vitro and in vivo gene expression profiles, we identified 351 and 255 genes as activated and repressed, respectively, during murine lung infection. As expected, numerous genes associated with virulent-phase growth were activated in the murine host, including pertussis toxin (PT), the PT secretion apparatus, and the type III secretion system. A significant number of genes encoding iron acquisition and heme uptake proteins were highly expressed during infection, supporting iron acquisition as critical for B. pertussis survival in vivo. Numerous metabolic genes were repressed during infection. Overall, these data shed light on the gene expression profile of B. pertussisduring infection, and this method will facilitate efforts to understand how this pathogen causes infection

    Weekly SARS-CoV-2 screening of asymptomatic kindergarten to grade 12 students and staff helps inform strategies for safer in-person learning

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in K-12 schools was rare during in 2020-2021; few studies included Centers for Disease Control and Prevention (CDC)-recommended screening of asymptomatic individuals. We conduct a prospective observational study of SARS-CoV-2 screening in a mid-sized suburban public school district to evaluate the incidence of asymptomatic coronavirus disease 2019 (COVID-19), document frequency of in-school transmission, and characterize barriers and facilitators to asymptomatic screening in schools. Staff and students undergo weekly pooled testing using home-collected saliva samples. Identification of \u3e 1 case in a school prompts investigation for in-school transmission and enhancement of safety strategies. With layered mitigation measures, in-school transmission even before student or staff vaccination is rare. Screening identifies a single cluster with in-school staff-to-staff transmission, informing decisions about in-person learning. The proportion of survey respondents self-reporting comfort with in-person learning before versus after implementation of screening increases. Costs exceed $260,000 for assays alone; staff and volunteers spend 135-145 h per week implementing screening

    Intranasal Peptide-Based FpvA-KLH Conjugate Vaccine Protects Mice From Pseudomonas aeruginosa Acute Murine Pneumonia

    Get PDF
    Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic respiratory infections associated with morbidity and mortality, especially in patients with cystic fibrosis. Vaccination against P. aeruginosa before colonization may be a solution against these infections and improve the quality of life of at-risk patients. To develop a vaccine against P. aeruginosa, we formulated a novel peptide-based P. aeruginosa subunit vaccine based on the extracellular regions of one of its major siderophore receptors, FpvA. We evaluated the effectiveness and immunogenicity of the FpvA peptides conjugated to keyhole limpet hemocyanin (KLH) with the adjuvant curdlan in a murine vaccination and challenge model. Immunization with the FpvA-KLH vaccine decreased the bacterial burden and lung edema after P. aeruginosa challenge. Vaccination with FpvA-KLH lead to antigen-specific IgG and IgM antibodies in sera, and IgA antibodies in lung supernatant. FpvA-KLH immunized mice had an increase in recruitment of CD11b+ dendritic cells as well as resident memory CD4+ T cells in the lungs compared to non-vaccinated challenged mice. Splenocytes isolated from vaccinated animals showed that the FpvA-KLH vaccine with the adjuvant curdlan induces antigen-specific IL-17 production and leads to a Th17 type of immune response. These results indicate that the intranasal FpvA-KLH conjugate vaccine can elicit both mucosal and systemic immune responses. These observations suggest that the intranasal peptide-based FpvA-KLH conjugate vaccine with curdlan is a potential vaccine candidate against P. aeruginosa pneumonia

    CK1ε Is Required for Breast Cancers Dependent on β-Catenin Activity

    Get PDF
    Background: Aberrant β\beta-catenin signaling plays a key role in several cancer types, notably colon, liver and breast cancer. However approaches to modulate β\beta-catenin activity for therapeutic purposes have proven elusive to date. Methodology: To uncover genetic dependencies in breast cancer cells that harbor active β\beta-catenin signaling, we performed RNAi-based loss-of-function screens in breast cancer cell lines in which we had characterized β\beta-catenin activity. Here we identify CSNK1E, the gene encoding casein kinase 1 epsilon (CK1ε\varepsilon) as required specifically for the proliferation of breast cancer cells with activated β\beta-catenin and confirm its role as a positive regulator of β\beta-catenin-driven transcription. Furthermore, we demonstrate that breast cancer cells that harbor activated β\beta-catenin activity exhibit enhanced sensitivity to pharmacological blockade of Wnt/β\beta-catenin signaling. We also find that expression of CK1ε\varepsilon is able to promote oncogenic transformation of human cells in a β\beta-catenin-dependent manner. Conclusions/Significance: These studies identify CK1ε\varepsilon as a critical contributor to activated β\beta-catenin signaling in cancer and suggest it may provide a potential therapeutic target for cancers that harbor active β\beta-catenin. More generally, these observations delineate an approach that can be used to identify druggable synthetic lethal interactions with signaling pathways that are frequently activated in cancer but are difficult to target with the currently available small molecule inhibitors

    Control of Cyclin D1 and Breast Tumorigenesis by the EglN2 Prolyl Hydroxylase

    Get PDF
    Summary2-Oxoglutarate-dependent dioxygenases, including the EglN prolyl hydroxylases that regulate HIF, can be inhibited with drug-like molecules. EglN2 is estrogen inducible in breast carcinoma cells and the lone Drosophila EglN interacts genetically with Cyclin D1. Although EglN2 is a nonessential gene, we found that EglN2 inactivation decreases Cyclin D1 levels and suppresses mammary gland proliferation in vivo. Regulation of Cyclin D1 is a specific attribute of EglN2 among the EglN proteins and is HIF independent. Loss of EglN2 catalytic activity inhibits estrogen-dependent breast cancer tumorigenesis and can be rescued by exogenous Cyclin D1. EglN2 depletion also impairs the fitness of lung, brain, and hematopoietic cancer lines. These findings support the exploration of EglN2 inhibitors as therapeutics for estrogen-dependent breast cancer and other malignancies

    Dark Force Detection in Low Energy e-p Collisions

    Get PDF
    We study the prospects for detecting a light boson X with mass m_X < 100 MeV at a low energy electron-proton collider. We focus on the case where X dominantly decays to e+ e- as motivated by recent "dark force" models. In order to evade direct and indirect constraints, X must have small couplings to the standard model (alpha_X 10 MeV). By comparing the signal and background cross sections for the e- p e+ e- final state, we conclude that dark force detection requires an integrated luminosity of around 1 inverse attobarn, achievable with a forthcoming JLab proposal.Comment: 38 pages, 19 figures; v2, references adde

    Synthetic Lethal Interaction between Oncogenic KRAS Dependency and STK33 Suppression in Human Cancer Cells

    Get PDF
    An alternative to therapeutic targeting of oncogenes is to perform “synthetic lethality” screens for genes that are essential only in the context of specific cancer-causing mutations. We used high-throughput RNA interference (RNAi) to identify synthetic lethal interactions in cancer cells harboring mutant KRAS, the most commonly mutated human oncogene. We find that cells that are dependent on mutant KRAS exhibit sensitivity to suppression of the serine/threonine kinase STK33 irrespective of tissue origin, whereas STK33 is not required by KRAS-independent cells. STK33 promotes cancer cell viability in a kinase activity-dependent manner by regulating the suppression of mitochondrial apoptosis mediated through S6K1-induced inactivation of the death agonist BAD selectively in mutant KRAS-dependent cells. These observations identify STK33 as a target for treatment of mutant KRAS-driven cancers and demonstrate the potential of RNAi screens for discovering functional dependencies created by oncogenic mutations that may enable therapeutic intervention for cancers with “undruggable” genetic alterations.National Institutes of Health (U.S.) (grant R33 CA128625)National Institutes of Health (U.S.) (grant NIH U54 CA112962)National Institutes of Health (U.S.) (grant P01 CA095616)National Institutes of Health (U.S.) (grant P01 CA66996)Starr Cancer ConsortiumDoris Duke Charitable FoundationMPN Research FoundationDeutsche Forschungsgemeinschaft (grant SCHO 1215/1-1)Deutsche Forschungsgemeinschaft (grant FR 2113/1-1)Brain Science FoundationLeukemia & Lymphoma Society of Americ

    Intranasal Acellular Pertussis Vaccine Provides Mucosal Immunity and Protects Mice from Bordetella Pertussis

    Get PDF
    Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen Bordetella pertussis resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses. We utilized a murine immunization and challenge model to characterize the efficacy of intranasal immunization (IN) with DTaP vaccine or DTaP vaccine supplemented with curdlan, a known Th1/Th17 promoting adjuvant. Protection from IN delivered DTaP was compared to protection mediated by intraperitoneal injection of DTaP and whole-cell pertussis vaccines. We tracked fluorescently labeled DTaP after immunization and detected that DTaP localized preferentially in the lungs while DTaP with curdlan was predominantly in the nasal turbinates. IN immunization with DTaP, with or without curdlan adjuvant, resulted in anti-B. pertussis and anti-pertussis toxin IgG titers at the same level as intraperitoneally administered DTaP. IN immunization was able to protect against B. pertussis challenge and we observed decreased pulmonary pro-inflammatory cytokines, neutrophil infiltrates in the lung, and bacterial burden in the upper and lower respiratory tract at day 3 post challenge. Furthermore, IN immunization with DTaP triggered mucosal immune responses such as production of B. pertussis-specific IgA, and increased IL-17A. Together, the induction of a mucosal immune response and humoral antibody-mediated protection associated with an IN administered DTaP and curdlan adjuvant warrant further exploration as a pertussis vaccine candidate formulation

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes
    corecore