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SUMMARY

2-Oxoglutarate-dependent dioxygenases, including the EglN prolyl hydroxylases that regulate HIF, can be
inhibited with drug-like molecules. EglN2 is estrogen inducible in breast carcinoma cells and the lone
Drosophila EglN interacts genetically with Cyclin D1. Although EglN2 is a nonessential gene, we found that
EglN2 inactivation decreases Cyclin D1 levels and suppresses mammary gland proliferation in vivo. Regula-
tion of Cyclin D1 is a specific attribute of EglN2 among the EglN proteins and is HIF independent. Loss of
EglN2 catalytic activity inhibits estrogen-dependent breast cancer tumorigenesis and can be rescued by
exogenous Cyclin D1. EglN2 depletion also impairs the fitness of lung, brain, and hematopoietic cancer lines.
These findings support the exploration of EglN2 inhibitors as therapeutics for estrogen-dependent breast
cancer and other malignancies.
INTRODUCTION

Most successful drugs are small organic molecules that bind to,

and inhibit, specific cellular proteins. Proteins that serve as

enzymes have proven to be particularly tractable as drug targets.

Establishing additional classes of enzymes that can be manipu-

lated with small organic molecules opens new avenues for drug

discovery.

The 2-oxoglutarate and iron-dependent dioxygenase super-

family includes the collagen prolyl and lysyl hydroxylases, the

FTO and AlkB DNA demethylases, the JmjC-containing histone

demethylases, the FIH1 asparaginyl hydroxylase, and the EglN

family prolyl hydroxylases (Aravind and Koonin, 2001; Klose

et al., 2006; Pollard et al., 2008; Taylor, 2001). These enzymes
C

can be inhibited with drug-like small molecules that compete

with 2-oxoglutarate or interfere with iron utilization, both in vitro

and in vivo (Bruegge et al., 2007; Mole et al., 2003; Ozer and

Bruick, 2007; Safran et al., 2006).

There are three EglN (also called PHD or HPH) family members

in humans, called EglN1, EglN2, and EglN3 (Kaelin and Ratcliffe,

2008). All three enzymes are capable of hydroxylating the

a subunit of the heterodimeric transcription factor HIF (hypoxia-

inducible factor). Prolyl hydroxylated HIFa is recognized by

a ubiquitin ligase complex containing the pVHL tumor-

suppressor protein, leading to its polyubiquitinylation and subse-

quent proteasomal degradation. EglN family members exhibit

Km values for oxygen that exceed the oxygen concentrations

found in mammalian tissues (Kaelin and Ratcliffe, 2008).
SIGNIFICANCE

Cyclin D1 plays an important role in many cancers, including breast cancer. The observations described herein predict that
inhibiting EglN2 catalytic activity will diminish Cyclin D1 levels in cancer cells and impair their ability to proliferate in vivo.
Notably, EglN2 is estrogen inducible and loss of either EglN2 or Cyclin D1 leads to mammary gland hypoproliferation. There-
fore the relationship between EglN2 and Cyclin D1 might be especially relevant in hormone-sensitive breast cancer, in which
new therapies are needed for women who become refractory to estrogen antagonists. EglN2 appears to be an attractive
drug target because EglN2 is not essential in mammals and it has already been established that enzymes of this class
can be inhibited with drug-like small organic molecules.
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Accordingly, these enzymes are highly sensitive to decrements in

oxygen availability, such as might occur following an interruption

in blood supply. HIF regulates a program of gene expression that

facilitates survival under hypoxic conditions through cell-intrinsic

changes in metabolism and cell-extrinsic changes affecting

oxygen delivery. For example, HIF activates the transcription of

genes such as erythropoietin that enhance red blood cell produc-

tion and hence blood oxygen carrying capacity. EglN antagonists

stimulate red blood cell production in mammals and are currently

undergoing phase II testing for different forms of anemia (Hsieh

et al., 2007; Safran et al., 2006).

EglN1 (also called PHD2) is the primary prolyl hydroxylase

responsible for HIF regulation (Berra et al., 2003; Minamishima

et al., 2008; Takeda et al., 2008). EglN2 (also called PHD1) and

EglN3 (also called PHD3) might also regulate HIF under certain

conditions (Appelhoff et al., 2004). For example, EglN3 is

itself a HIF target, is induced by hypoxia, and has a lower oxygen

Km than EglN1 (Appelhoff et al., 2004; Minamishima et al., 2009).

Cell culture and animal experiments support that EglN3 partially

compensates for EglN1 when the latter is inactivated by hypoxia

(Appelhoff et al., 2004; Minamishima et al., 2009). Whether EglN2

and EglN3 have HIF-independent functions is less clear,

although recent studies support a HIF-independent role for

EglN3 in the control of apoptosis (Rantanen et al., 2008; Schlisio

et al., 2008).

Polyak and coworkers reported that EglN2 mRNA accumu-

lates in breast cancer cells that have been stimulated to prolif-

erate with estrogen and that EglN2 overexpression promotes

estrogen-independent growth and tamoxifen resistance (Seth

et al., 2002). Frei and Edgar (2004) noted that certain phenotypes

observed in flies engineered to overproduce Cyclin D1 were

abrogated by concurrent inactivation of Egl9, which is the lone

ancestral EglN family member in Drosophila. Since Cyclin D1

Figure 1. EglN2 Regulates Cyclin D1

(A) Immunoblot analysis of HeLa cells 48 hr after

transfection with siRNAs targeting EglN1, EglN2,

EglN3, or a scrambled control siRNA.

(B, E, and F) Immunoblot (B) and qRT PCR (E and

F) analysis of U2OS and HeLa cells transfected

with two independent siRNAs (#1 and #4) targeting

EglN2 (asterisk indicates nonspecific bands). Error

bars represent one SEM.

(C) Immunoblot analysis of ZR 75 1 cells infected

with a lentivirus encoding an ARNT shRNA or

scrambled control (Scr) followed by transfection

with siRNA against EglN2 or scrambled control.

(D) Immunoblot analysis of UOK101 cells in

fected with a lentivirus encoding an HIF2a

shRNA or scrambled control (Scr) followed by

transfection with siRNA against EglN2 or scram

bled control.

plays an important role in many forms

of cancer, including breast cancer, and

is induced by estrogen in estrogen-

receptor positive breast cancers (Bart-

kova et al., 1994; Landis et al., 2006;

Roy and Thompson, 2006; Yu et al.,

2001), we asked whether EglN2 activity affects Cyclin D1

activity.

RESULTS

Toward this end, we transiently transfected HeLa cervical carci-

noma cells, U2OS osteosarcoma cells, and both T47D and

ZR-75-1 breast carcinoma cells with previously validated

siRNAs that are specific for EglN1, EglN2, or EglN3 (Appelhoff

et al., 2004). Downregulation of EglN2, but not EglN1 or EglN3,

decreased Cyclin D1 protein levels (Figure 1A, Figure S1A [avail-

able online], and data not shown). Similar results were observed

with a second, independent, EglN2 siRNA and downregulation of

Cyclin D1 by the two different EglN2 siRNAs mirrored their ability

to downregulate EglN2 (Figure 1B and Figure S1B). In some

experiments Cyclin D3 was also decreased (data not shown).

As expected, suppression of EglN1, but not EglN2 or EglN3,

induced HIF1a (Figure 1A). These results suggest that Cyclin

D1 is specifically regulated by EglN2 among the EglN family

members and that EglN2 regulates Cyclin D1 in a HIF-indepen-

dent manner.

In further support of the latter conclusion, downregulation of

Cyclin D1 after EglN2 loss was not affected by concurrent

inactivation of the HIFa heterodimeric partner ARNT (HIF1b)

(Figure 1C and Figure S2A). In addition, EglN2 loss decreased

Cyclin D1 in UOK101 and 769-P VHL�/� renal carcinoma cells,

which constitutively produce HIF2a protein due to the absence

of pVHL and produce neither HIF1a mRNA nor protein (Maxwell

et al., 1999) (Figure 1D, Figure S2B, and data not shown). More-

over, elimination of HIF2a in these cells with a highly effective

short hairpin RNA (shRNA) did not prevent the loss of Cyclin

D1 in cells depleted of EglN2 (Figure 1D and Figure S2B). Collec-

tively, these results strongly suggest that the regulation of Cyclin
414 Cancer Cell 16, 413–424, November 3, 2009 ª2009 Elsevier Inc.
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D1 by EglN2 is not mediated by changes in HIF activity. Note that

in some experiments EglN2 protein migrated as a doublet (for

example, Figure 1C), probably due to alternative translation

initiation (Tian et al., 2006).

Both EglN2 mRNA and Cyclin D1 mRNA levels were dimin-

ished in cancer cells transfected with EglN2 siRNA, but not in

cells transfected with a scrambled control siRNA (Figures 1E

and 1F and Figures S2C and S2D). Moreover, we have not de-

tected specific binding of EglN2 to Cyclin D1 and EglN2 failed

to hydroxylate Cyclin D1 in vitro (data not shown). Collectively,

these results suggest that the regulation of Cyclin D1 by EglN2

is indirect and involves changes in Cyclin D1 transcription or

mRNA stability.

To examine this further, we measured the levels of heteroge-

nous nuclear Cyclin D1 RNA, indicative of newly transcribed

mRNA precursors, and recruitment of RNA Polymerase II to

the Cyclin D1 promoter, indicative of on-going transcription, in

cells after EglN2 depletion. In both T47D and ZR-75-1 breast

carcinoma cells depletion of EglN2 with an effective shRNA

decreased heterogenous nuclear Cyclin D1 RNA levels (Figures

S3A–S3D) and decreased loading of RNA Polymerase II onto the

Cyclin D1 promoter (Figures S3E and S3F) relative to cells

treated with a scrambled control shRNA. In contrast, we did

not detect a difference in Cyclin D1 mRNA stability in cells that

were infected to produce either the EglN2 or control shRNA

and then treated with actinomycin to prevent new mRNA

synthesis (data not shown). Therefore the regulation of Cyclin

D1 by EglN2 is at least partly at the level of transcription.

EglN2�/�mice are viable and grossly normal (Aragones et al.,

2008; Takeda et al., 2006). In keeping with the siRNA-based

experiments described above, we found that Cyclin D1 mRNA

and protein levels are diminished in EglN2�/� mouse embryo

Figure 2. Decreased Cyclin D1 Levels in

EglN2 / Mice

(A and B) Immunoblot (A) and qRT PCR analysis

(B) of MEFs prepared from littermates with the

indicated genotypes. Error bars represents one

SEM.

(C) Whole mounts of mammary glands from wild

type and EglN2 / mice 1 day postpartum. Images

were taken at 63 magnification.

(D) Immunoblot analysis of mammary glands as

in (C).

fibroblasts (MEFs) (Figures 2A and 2B).

Moreover, we observed that older, preg-

nant EglN2�/� mice do not breastfeed

their pups properly compared to litter-

mate controls, a phenotype previously

observed in Cyclin D1�/� mice (Sicinski

et al., 1995). Moreover, mammary glands

from older, lactating EglN2�/� mice re-

vealed evidence of hypoproliferation

reminiscent of, but not as severe as

seen in, Cyclin D1�/� mice (Sicinski

et al., 1995) (Figure 2C) and exhibited

lower levels of Cyclin D1 protein (Fig-

ure 2D). Therefore, EglN2 regulates

Cyclin D1 in vivo, with loss of EglN2 leading to a hypomorphic

Cyclin D1 phenotype.

Since EglN2 mRNA is induced by estrogen in human breast

cancer cells (Appelhoff et al., 2004; Seth et al., 2002), and

EglN2 loss affects mammary gland proliferation, we next

focused our attention on the role of EglN2 in human breast

cancer. We first confirmed that EglN2 protein levels, like EglN2

mRNA levels, are induced by estrogen in human (T47D) breast

cancer cells (Figures 3A and 3B). Moreover, EglN2 mRNA levels

are increased in estrogen receptor (ER)-positive breast cancers

compared to ER-negative breast cancers (Figures 3C and 3D)

and Cyclin D1 mRNA and EglN2 mRNA levels are positively

correlated with one another across breast cancers (Figure S4).

In contrast, EglN1 mRNA levels appear to be highest in ER-nega-

tive, Her2-negative breast cancers and EglN3 mRNA levels

highest in ER-negative, Her2-positive breast cancers (Figure 3D).

Notably, both EglN1 and EglN3 are HIF targets. Although Her2

activation has been reported to activate HIF (Laughner et al.,

2001; Li et al., 2005) we observed the clearest evidence of

HIF activation, as determined by accumulation of canonical

HIF-responsive mRNAs, in the ER-negative, Her2-negative

breast cancers (A.L.R. and W.G.K., unpublished data).

Forced overexpression of EglN2 promotes colony formation

by T47D cells (Seth et al., 2002). Similarly, we found that overex-

pression of EglN2 was sufficient to promote the proliferation of

T47D cells in the absence of estrogen (Figures 3E and 3F). Exog-

enous EglN2 had only minimal effects on Cyclin D1 and prolifer-

ation in the presence of estrogen, however, presumably because

the endogenous EglN2 is no longer limiting under these condi-

tions (Figures 3E and 3F). To investigate whether EglN2 loss

would inhibit breast cancer cell proliferation, we infected T47D

cells with retroviral vectors encoding shRNAs corresponding to
Cancer Cell 16, 413–424, November 3, 2009 ª2009 Elsevier Inc. 415
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the two EglN2 siRNAs used above. Downregulation of both

EglN2 and Cyclin D1 by the EglN2 shRNAs, but not control

(scrambled GFP) shRNA, was confirmed by immunoblot analysis

(Figure 4A).

As expected, T47D cells infected with the control shRNA, like

parental T47D cells, proliferated in the presence of estrogen but

not in its absence (Figure 4B). Proliferation in the presence of

estrogen was markedly reduced, however, in T47D cells infected

with either of the two EglN2 shRNAs (Figure 4B). The effects of

EglN2 reduction on proliferation were even more striking in the

estrogen-dependent cell lines BT-474 (Figures 4C and 4D) and

ZR75-1 (Figures 4E and 4F).

The observation that two independent EglN2 shRNAs, but not

the control shRNA, inhibited cell proliferation argues that this

phenotype is due to effects on EglN2 activity (‘‘on-target’’). To

test this further, we performed rescue experiments using T47D

cells that were infected with a retrovirus encoding a nonnatural

EglN2 mRNA in which translationally silent mutations were

introduced into the sequence targeted by shRNA #4. These

cells, but not cells infected with an empty retrovirus, were now

insensitive to the Cyclin D1 suppressive (Figure 5A) and antipro-

liferative effects of the EglN2 shRNA #4 (Figure 5B). These find-

ings, together with our analysis of EglN2�/� cells, support that

EglN2 regulates Cyclin D1-dependent cell proliferation.

In parallel, we tested cells producing a shRNA #4-resistant

EglN2 mRNA encoding a hydroxylase-defective EglN2 mutant

(EglN2 H358A) (Epstein et al., 2001; Figure S5). This mutant, in

which a canonical histidine residue within the EglN2 catalytic

domain has been replaced by alanine, did not rescue cyclin D1

levels (Figure 5A) and did not rescue proliferation in T47D cells

Figure 3. EglN2 Is Estrogen Inducible

(A and B) Immunoblot (A) and qRT PCR analysis (B) of T47D cells treated with estrogen or vehicle. Error bars represents one SEM.

(C) Normalized EglN2 mRNA levels in nine publically available mRNA expression profile data sets. Red boxes, ER positive breast cancers; blue boxes, ER nega

tive breast cancers. P values for these nine data sets are 1.2E 9; 3.4E 8; 6.2E 8; 1.1E 7; 2.1E 7; 6.3E 7; 1.4E 6; 5.6E 5; and 9.6E 5, respectively.

(D) Relative expression of EglN2 and other genes of interest in subsets of breast cancers as analyzed by gene expression array. Samples are arranged into

subsets according to immunohistochemistry (IHC) staining results for ER (blue indicates R1% positive nuclei and green indicates <1% positive nuclei) and

HER 2/neu (blue indicates HER 2/neu score of 3+ [strong complete membrane staining in >10% of cells] and green a HER 2/neu score of 0, 1, or 2+). The middle

panel is a display of the relative gene expression (red indicates high expression and blue indicates low expression) with each column representing an individual

tumor sample and each row representing the results for the indicated genes. Cyclin D1 (CCND1) mRNA levels are higher in ER positive tumors compared to

ER negative tumors (mean levels 500 versus 330 arbitrary units; p < 2E 8).

(E and F) Immunoblot analysis (E) and proliferation assay (F) of T47D cells infected with retrovirus encoding HA EglN2 or with the empty vector in the presence or

absence of estrogen (10 nM) treatment. In (E), estrogen exposure was for 48 hr prior to cell harvest and anti HA antibody was used to detect exogenous (Exo)

EglN2. Error bars represent one SEM.
416 Cancer Cell 16, 413–424, November 3, 2009 ª2009 Elsevier Inc.
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infected to produce EglN2 shRNA #4 (Figure 5B). Similarly, the

retrovirus encoding wild-type EglN2, but not EglN2 H358A,

restored Cyclin D1 in EglN2�/� MEFs (Figure 5C). It should be

noted that the EglN2 H358A has a shorter half-life than wild-

type EglN2 (Figure S6 and data not shown). Therefore, a higher

titer of the EglN2 H358A virus was used to achieve comparable

levels of wild-type and mutant EglN2 in Figures 5A and 5C. In

viral titration experiments wild-type EglN2 rescued Cyclin D1

levels over a wide range of titers, whereas mutant EglN2 did

not rescue at any titer tested (Figure S6 and data not shown).

Similarly, wild-type EglN2, but not EglN2 H358A, rescued

Cyclin D1 production in HeLa cells transiently transfected with

EglN2 siRNA #4 (Figure 5D). This effect was specific because

neither EglN1 nor EglN3 rescued Cyclin D1 levels when tested

in parallel (Figure 5D). In these experiments, EglN3, however, ap-

peared to be unstable, possibly due to polyubiquitinylation by

SIAH (Nakayama et al., 2004). Finally, endogenous Cyclin D1

levels were decreased in cells exposed to either hypoxia or small

molecule hydroxylase inhibitors (Figures 5E and 5F). Downregu-

lation of Cyclin D1 by hypoxia and hydroxylase inhibitors was

due, at least in part, to decreased Cyclin D1 mRNA levels and

was not an indirect consequence of activating the HIF transcrip-

tional response as it did not depend on the canonical HIFa

Figure 4. Downregulation of EglN2 Suppresses

Cancer Cell Proliferation

(A and B) Immunoblot (A) and cell proliferation assay (B) of

T47D cells infected with retrovirus encoding shRNA against

EglN2 (sequence 1 or 4) or a scrambled control shRNA. In

(B), cells were grown in Phenol red free RPMI medium supple

mented with 5% charcoal/dextran treated FBS in the pres

ence or absence of estrogen (10 nM) as indicated.

(C F) Immunoblot (C and E) and cell proliferation (D and F)

assay of BT474 (C and D) and ZR75 1 cells (E and F). Error

bars represent one SEM.

partner ARNT (HIF1b) (Figure 5F and Figure S7).

These results strongly suggest that regulation of

Cyclin D1 by EglN2 is linked to the ability of EglN2

to hydroxylate one or more substrates other

than HIF.

Cyclin D1 stimulates proliferation by promoting

the phosphorylation of the retinoblastoma protein

(pRB) and cells lacking pRB are inured to inhibitors

of Cyclin D1-associated kinase activity. Overex-

pression of Cyclin D1, like overexpression of

EglN2 itself, rescued cell proliferation in T47D cells

expressing an EglN2 shRNA (Figures 6A and 6B).

Moreover, the proliferation of breast cancer cells

lacking pRB function due to RB1 mutation (Figures

6C and 6D), exogenous expression of the E7 onco-

protein (Figures 6E and 6F), or exogenous expres-

sion of RB1 shRNAs (Figure S8) was not impaired

by EglN2 loss despite diminished Cyclin D1 levels.

These results support that impaired proliferation in

cells lacking EglN2 is due, at least partly, to loss of

Cyclin D1. We also noted that exogenous Cyclin D

levels were diminished by EglN2 in some experi-

ments (Figure 6A). The significance of this finding

is not yet clear but could reflect a posttranscriptional link

between EglN2 and Cyclin D1.

To determine whether EglN2 ablation would diminish cancer

cell proliferation or survival in other cell lineages, we obtained

multiple shRNA constructs targeting EglN2 from the RNAi

Consortium (TRC) at the Broad Institute. We confirmed that

each of these constructs effectively suppressed EglN2 (Fig-

ure 7A). We next examined data from a set of 12 cancer cell lines

that were screened with a pooled version of the TRC shRNA

library (Luo et al., 2008) to determine whether cells harboring

these EglN2-specific shRNAs were depleted from a population

of cells during 28 days. Indeed, we observed that cells expressing

EglN2-specific shRNAs were depleted from the population for

each of the cell lines tested. Specifically, we observed that these

constructs were depleted 2.8-fold on average with a maximum

depletion of 18.4-fold for construct #5 in the U251 cell line

(Figure 7B). EglN2 ranks in the top 16.5% (rank #1553/9423

genes) of depleted genes across all 12 cell lines as compared

to all genes examined in this pooled screen (Figure 7C). Together,

these observations support that EglN2 is essential for prolifera-

tion of cancer cell lines derived from multiple lineages.

To investigate whether downregulation of EglN2 would affect

tumor growth in vivo, we next infected ZR75-1 breast carcinoma
Cancer Cell 16, 413–424, November 3, 2009 ª2009 Elsevier Inc. 417
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cells with lentiviruses encoding EglN2 shRNAs (#1 or #4) under

the control of a doxycycline-inducible promoter. Cells infected

with an analogous lentivirus encoding a scrambled GFP shRNA

served as a control. As expected, doxycycline treatment of cells

infected with the EglN2 shRNA lentiviruses led to decreased

EglN2 and Cyclin D1 protein levels and decreased cell prolifera-

tion compared to cells grown in the absence of doxycycline

(Figures 8A and 8B). Cessation of proliferation in this model

was associated with an apparent G1/S block, consistent with

loss of Cyclin D1 function (Figure S9). These effects of doxycy-

cline were specific because they were not observed in cells

infected with the control shRNA lentivirus. Gene expression

profiling, combined with gene set enrichment analysis,

confirmed that EglN2 depletion led to downregulation genes

Figure 5. Control of Cyclin D1 and Prolifera

tion by EglN2 Is Hydroxylase Dependent

(A and B) Immunoblot (A) and cell proliferation

assay (B) of T47D cells that were first infected

with a retrovirus expressing an shRNA resistant

mRNA encoding wild type or catalytic dead

(H358) EglN2 (or with empty vector) and then in

fected with a EglN2 shRNA retrovirus (or scram

bled shRNA vector).

(C) Immunoblot analysis of EglN2 / MEFs in

fected with retroviruses encoding EglN2 (wild

type) or EglN2 H358A or with the empty vector.

An EglN2+/+ extract was included in lane 1 as

a control. Note that the EglN2 antibody does not

recognize murine EglN2.

(D) Immunoblot analysis of HeLa cells transiently

transfected with plasmids encoding the indicated

EglN proteins (or the empty vector) and siRNAs

against EglN2 or luciferase (GL3). The molecular

bases for the bands indicated by the asterisks

are unknown.

(E and F) Immunoblot analysis of ZR 75 1 cell (E)

and isogenic murine hepatoma cells (ARNT / or

ARNT+/+) (F) treated overnight with hypoxia

(0.2% O2), CoCl2 (200 mM), DFO (200 mM),

DMOG (1 mM) or FG0041 (40 mM). Error bars

represent one SEM.

linked to cell-cycle progression,

estrogen-dependent signaling, and

tamoxifen resistance (Figure S10 and

Tables S1–S3).

Next, the ZR75-1 cells infected with the

inducible shRNA lentiviruses were in-

fected with a retrovirus encoding lucif-

erase and grown orthotopically in the

mammary glands of immunocompro-

mised mice. The luciferase activity of

the EglN2 shRNA cells was comparable

to the luciferase activity of the control

shRNA cells in vitro (data not shown).

One mammary gland was injected with

the inducible EglN2 shRNA cells and the

contralateral mammary gland was in-

jected with the inducible control shRNA.

Mice were treated with a depot form of

estrogen to promote the growth of the breast cancer cells and

live tumor cell burden was monitored noninvasively with biolumi-

nescent imaging beginning 1 week after cell implantation. At this

time point, the EglN2 shRNA tumors usually exhibited stronger

luciferase signals than the control shRNA cells, arguing that

the EglN2 shRNA cells were at least as tumorigenic as the control

cells in vivo prior to the administration of doxycycline. Three days

later, imaging was repeated. Mice in which both tumors had

increased in signal intensity, indicative of tumor cell expansion,

were then fed chow containing doxycycline and serially moni-

tored using bioluminescence. Over time there was a progressive

decline in the EglN2 shRNA tumor signal relative to the control

shRNA tumor signal, largely due to continued expansion of the

tumors formed by the control shRNA cells and an apparent arrest
418 Cancer Cell 16, 413–424, November 3, 2009 ª2009 Elsevier Inc.
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of the EglN2 shRNA cells (Figures 8C and 8D). After 5–6 weeks

of doxycycline treatment the mice were sacrificed and the

tumors were excised and weighed. Consistent with the biolumi-

nescent images, the tumors formed by the EglN2 shRNA cells

were smaller than the tumors formed by the control shRNA cells

(Figures 8E and 8F). It should be noted that bioluminescent

imaging detects viable tumor cells, whereas tumor mass

includes contributions from stroma, host cells, and nonviable

tumor cells. Similar results were observed with T47D cells (Fig-

ure S11) and MCF7 cells (Figure S12). Immunoblot analysis of

ZR75-1 tumor extracts prepared at necropsy confirmed that

Cyclin D1 levels were diminished in tumors after induction of

the EglN2 shRNAs in vivo (Figure 8G and data not shown).

Conversely, expression of Cyclin D1 under the control of a consti-

tutively active promoter restored the ability of EglN2-depleted

ZR75-1 cells to proliferate in vivo (Figure S13). Therefore, loss

of EglN2 decreases Cyclin D1 levels and inhibits tumor growth

in vivo.

Figure 6. Impaired Proliferation of Cells

Lacking EglN2 Is Due to Cyclin D1 Loss

(A and B) Immunoblot (A) and cell proliferation (B)

assay of T47D cells that were infected with retrovi

ruses encoding shRNAs against EglN2 (sequence

1 or 4) (or scrambled control) and then infected

with a retrovirus encoding HA Cyclin D1 (or empty

vector).

(C and D) Immunoblot (C) and cell proliferation

assay (D) of BT549 RB / breast carcinoma cells

infected with retroviruses encoding shRNAs

against EglN2 (sequence 1 or 4) or scrambled

control shRNA. In (D) cells were grown in Phenol

red free RPMI medium supplemented with 5%

charcoal/dextran treated FBS in the presence or

absence of estrogen (10 nM) as indicated.

(E and F) Immunoblot (E) and cell proliferation (F)

assay of T47D cells that were infected with a retro

virus encoding E7 (or empty retrovirus) and then

superinfected retroviruses encoding shRNAs

against EglN2 (sequence 4) (or scrambled control).

Note that E7 promotes the degradation of pRB

(Boyer et al., 1996) and that hyperphosphorylated

and hypophosphorylated pRB are not resolved

under these electrophoretic conditions. Error

bars represent one SEM.

DISCUSSION

We found that loss of EglN2, but not loss

of the paralogous proteins EglN1 and

EglN3, decreases Cyclin D1 mRNA and

protein levels, decreases cell prolifera-

tion, and decreases tumor formation.

Impaired proliferation in cells lacking

EglN2 could be rescued by restoring

Cyclin D1 protein production and was

not observed in cells lacking the pRB

tumor-suppressor protein, which is

required for growth inhibition in cells

deprived of Cyclin D1-associated kinase

activity. Therefore, loss of Cyclin D1

causes, and does not merely correlate with, impaired prolifera-

tion in EglN2-defective cells. An intimate, causal connection

between EglN2, Cyclin D1, and cell proliferation is also suggested

by similarities between EglN2�/� mice and Cyclin D1�/� mice,

both of which display impaired mammary gland proliferation in

response to pregnancy. Regulation of Cyclin D1 and cell prolifer-

ation by EglN2 depends on EglN2 catalytic activity, suggesting

that small molecule EglN2 inhibitors would have anticancer

activity.

Such inhibitors, were they to be developed, might be particu-

larly useful for the treatment of estrogen-dependent breast

cancer. Polyak and coworkers reported previously that EglN2

is estrogen inducible and that EglN2 overexpression promotes

breast cancer cell proliferation (Seth et al., 2002). The latter

observation, together with our EglN2 loss-of-function studies,

indicates that EglN2 activity regulates breast cancer proliferation

in response to estrogen. Cyclin D1, which is also induced by

estrogen, is an important regulator of breast cancer proliferation
Cancer Cell 16, 413–424, November 3, 2009 ª2009 Elsevier Inc. 419
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and is frequently amplified or otherwise overexpressed in this

disease (Roy and Thompson, 2006; Steeg and Zhou, 1998).

Loss of Cyclin D1-associated kinase activity is sufficient to

prevent or delay the development of breast cancer in mouse

models (Landis et al., 2006; Yu et al., 2001, 2006). Cyclin D1

also has kinase-independent functions related to ER signaling

and mammary epithelial proliferation (Landis et al., 2006;

Neuman et al., 1997; Yu et al., 2006; Zwijsen et al., 1997). There-

fore, EglN2 inhibitors might prove more efficacious than small

molecule inhibitors of cdk4 and cdk6, which are the catalytic

partners of Cyclin D1. Moreover, we have observed loss of the

ER in breast cancer cells deprived of EglN2 (Table S2; Q.Z.

and W.G.K., unpublished data). Therefore EglN2 antagonists

and ER antagonists might be additive or synergistic when used

to treat ER-positive breast cancers.

Downregulation of Cyclin D1 and impaired proliferation after

EglN2 loss was not restricted to breast cancer cells, however,

but appears to be common across a variety of tumor types.

Therefore, EglN2 inhibitors might be useful beyond the treatment

of ER-positive breast cancer. It will also be of interest to see if

EglN2, which maps to chromosome 19q13.2, is mutationally

activated in any human cancers.

Downregulation of EglN1, the primary HIF prolyl hydroxylase,

led to increased HIFa, as expected, but did not decrease Cyclin

D1 levels. Conversely, downregulation of EglN2 decreased

Cyclin D1 without appreciably affecting HIFa protein levels.

Moreover, downregulation of EglN2 decreased Cyclin D1 in cells

Figure 7. Impaired Fitness of Diverse

Cancer Cell Lines Lacking EglN2

(A) EglN2 mRNA abundance, as determined by

real time PCR, in U2OS cells infected with the indi

cated lentiviruses.

(B) Normalized abundance of the indicated EglN2

shRNA vectors, determined using microarray

hybridization of genomic DNA, 28 days after initial

infection with a pool containing �45,000 lentiviral

shRNA vectors and subsequent passage in vitro.

(C) EglN2 is an essential gene as determined by

the RIGER algorithm (Luo et al., 2008). The five

shRNA constructs targeting EglN2 were treated

as a set that was compared to the sets derived

from shRNA constructs targeting each of the other

�9,500 genes within each of the 12 cell lines

shown in (B). A Kolmogorov Smirnov statistic

was used for assessing bias of the EglN2 shRNA

set as showing evidence of depletion during the

experiment in (B). A second application of RIGER

was then used for identifying genes commonly

essential among the 12 cell lines. The score and

rank of EglN2 from this analysis are shown. Error

bars represent one SEM.

lacking ARNT (HIF1b), the heterodimeric

partner for HIFa, and in cells lacking

pVHL, which targets hydroxylated HIFa

for destruction. These observations

strongly suggest that loss of Cyclin D1

uponEglN2 inactivation isnotasecondary

consequence of changes in HIF activity.

Nonetheless, there is the potential for

crosstalk between HIF and Cyclin D1. For example, HIF can tran-

scriptionally activate REDD1, which inhibits mTOR activity

(Brugarolas et al., 2004; Reiling and Hafen, 2004) and thereby

decreases Cyclin D1 translation. Moreover, our findings do not

in any way preclude a role for EglN2 in the regulation of HIF

activity, such as has been inferred from studies of EglN2 null

animals subjected to regional ischemia (Aragones et al., 2008).

Hypoxia generally inhibits cell proliferation associated with

a loss of cyclin D1 and pRB hypophosphorylation presumably

as a means to conserve ATP. Our findings suggest that cessation

of proliferation under these conditions is due, at least partly, to

impaired EglN2 activity. EglN inhibitors that are capable of acti-

vating the HIF transcriptional program in vivo are currently being

tested in the clinic for the treatment of anemia and ischemic

diseases. A theoretical concern with such agents relates to the

ability of HIF to promote tumor growth in some preclinical

models (Semenza, 2003). Our findings suggest that such protu-

morigenic effects might be mitigated by antitumor effects stem-

ming from downregulation of Cyclin D1.

Clearly it will be important to determine the EglN2 substrate

that links EglN2 to Cyclin D1. It should be noted that EglN2 is

a nuclear protein (Metzen et al., 2003) and regulation of Cyclin

D1 appears to be largely at the level of Cyclin D1 transcription.

The latter was unexpected because the study by Frei and Edgar

(2004) linking Egl9 to Cyclin D1 used a transgenic Drosophila

overexpressing Cyclin D1 under the control of a heterologous

promoter. It is possible that EglN2 also influences Cyclin D1
420 Cancer Cell 16, 413–424, November 3, 2009 ª2009 Elsevier Inc.
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posttranscriptionally or that the findings of Frei and Edgar (2004)

were unrelated to the EglN2 biology described here and

therefore fortuitous. Regardless, higher metazoans, in contrast

to Drosophila and Caenorhabditis, have three EglN family

members. Our findings, together with previously published

work, indicate that EglN1 has been retained as the primary HIF

regulator under normal conditions and that EglN2 and EglN3,

in addition to regulating HIF, have assumed HIF-independent

roles in the control of proliferation and apoptosis, respectively.

EXPERIMENTAL PROCEDURES

Cell Culture

HeLa, U2OS, MEFs, UOK101, Phoenix, 293T, MCF7, ARNT / , and ARNT+/+

cells were maintained in DMEM containing 10% fetal bovine serum (FBS)

(Hyclone) except where indicated. The MCF7 media was supplemented with

Figure 8. Downregulation of EglN2

Suppresses Tumorigenesis

(A and B) Immunoblot (A) and cell proliferation

assay (B) of ZR75 1 cells infected with doxycycline

(DOX) inducible lentiviruses encoding shRNAs

against EglN2 (sequence 1 or 4) (or scrambled

control). Cells were grown in RPMI supplemented

with 10% FBS in the presence or absence of

doxycycline.

(C) Representative bioluminescent images of ortho

topic tumors formed by ZR75 1 cells as in (A) that

were then superinfected with a retrovirus encoding

firefly luciferase. A total of 8 3 106 cells were in

jected into the fourth mammary glands of nude

mice implanted with estrogen pellets. Biolumines

cent images were obtained 1 week later (day 0)

and serially after mice were begun on chow contain

ing doxycycline (day 3). Shown in (C) are the day

0 image (Before Dox) and day 35 image (After Dox).

(D) Quantitation of imaging studies as in (C).

* p < 0.01 for comparison between day 25 and

day 0; **p < 0.01 for comparison between day

35 and day 0. Error bars represent one SEM.

See Experimental Procedures for normalization.

(E) Representative gross appearance of tumors at

necropsy.

(F) Mean tumor weight at necropsy. Error bars

represent one SEM.

(G) Immunoblot analysis of tumors removed from

three mice at necropsy.

10 mg/ml insulin. 769 P, ZR 75 1, BT 474, T47D,

and BT 549 cells were maintained in RPMI

medium containing 10% FBS except where indi

cated. Following retroviral or lentiviral infection,

cells were maintained in the presence of hygrom

ycin (200 mg/ml) or puromycin (2 mg/ml) depending

on the vector. All cells were maintained at 37�C in

10% CO2.

Mice

EglN2 / mice were obtained from Regeneron

Pharmaceuticals. Inguinal mammary glands were

removed one day postpartum and whole mounts

were prepared as described previously (Geng

et al., 1999). MEFs were isolated from embryonic

day13.5 embryos as described previously (Kozar

et al., 2004). All mouse experiments complied with National Institutes of Health

guidelines and were approved by the Dana Farber Cancer Institute Animal

Care and Use Committee.

siRNA

Cells grown in 6 well plates were transfected with 200 nM siRNA with Lipofect

amine2000 (for mixtures of plasmids and siRNA oligos) or Oligofectamine (for

siRNA alone). siRNAs were purchased from Dharmacon, Inc. Sense strands

were as follows: GFP, 50 GGCTACGTCCAGGAGCGCACC 30; GL3, 50 CTTAC

GCTGAGTACTTCGATT 30; GFP Scramble, 50 AACAGTCGCGTTTGCGACTG

G 30; EglN2 A, 50 GACTATATCGTGCCCTGCATG 30; EglN2 4, 50 GCCACTC

TTTGACCGGTTGCT 30; EGLN1, 50 AGCTCCTTCTACTGCTGCA 30; EGLN3,

50 CAGGTTATGTTCGCCACGT 30 (Appelhoff et al., 2004; Schlisio et al., 2008).

Immunoblot Analysis

Whole cell extracts were prepared in EBC buffer (50 mM Tris [pH 8.0], 120 mM

NaCl, and 0.5% NP40) containing protease inhibitors. Mouse mammary

glands were lysed in NP 40 lysis buffer (10% glycerol, 50 mM Tris HCl
Cancer Cell 16, 413–424, November 3, 2009 ª2009 Elsevier Inc. 421
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[pH 7.5], 150 mM NaCl, 1% NP 40, 1 mM phenylmethylsulfonyl fluoride, and 2

mg/ml leupeptin and aprotinin). Equal amounts of protein, as determined by the

Bradford assay, were resolved by SDS PAGE and western blot analysis was

performed as previously described (Schlisio et al., 2008). Rabbit polyclonal

anti EglN1, EglN2, EglN3, HIF1a, and Glut1 antibodies were from Novus

Biological. Anti Cyclin D1, D2, and D3 antibodies were from Neomarker.

ARNT antibody was from BD Biosciences. Anti HA antibody was from Cova

nce. Antibodies against Vinculin, Tubulin, and FLAG (M2) were from Sigma.

Real-Time RT-PCR

Total RNA was isolated with RNeasy mini kit with on column DNase digestion

(QIAGEN). First strand cDNA was generated with the StrataScript First Stand

Synthesis System (Stratagene). Real time PCR was performed in duplicate

with QuantiTect SYBR Green PCR master mix (QIAGEN) and the Mx3000P

QPCR system (Stratagene). All values were normalized to the level of 18S

rRNA (F: 50 AAGACGATCAGATACCGTCGTAG 30; R: 50 GTTTCAGCTTTGC

AACCATACTC 30) or b actin abundance. Real time PCR primer sequences

are as follows: mouse EglN2 (F: 50 CTGGGCAACTACGTCATCAAT 30; R: 50 TG

CACCTTAACATCCCAGTTC 30); mouse Cyclin D1 (F: CCAACAACTTCCTC

TCCTGCT 30; R: 50 GACTCCAGAAGGGCTTCAATC 30); mouse b actin (F:

50 ACCAACTGGGACGACATGGA 30; R: 50 GGTCTCAAACATGATCTGGGTC

AT 30); human EglN2 (F: 50 AACATCGAGCCACTCTTTGAC 30; R: 50 TCCTT

GGCATCAAAATACCAG 30); human Cyclin D1 (F: 50 CCGTCCATGCGGAAG

ATC 30; R: 50 ATGGCCAGCGGGAAGAC 30); human b actin (F: 50 AGAAAA

TCTGGCACCACACC 30; R: 50 GGGGTGTTGAAGGTCTCAAA 30).

Plasmids

The EglN2 open reading frame cDNA was PCR amplified with a 50 primer that

introduced a BamH1 site and a Flag epitope and a 30 primer that introduced an

EcoRI site. The product was digested with BamHI and EcoRI and cloned into

pBabe Puro vector cut with these two enzymes. pBABE EglN2 H358A was

made using a site directed mutagenesis kit (Quick change; Stratagene).

pBabeHygro Cyclin D1 was constructed by ligating the BamHI SalI Cyclin

D1 cDNA insert from pBabePuro Cyclin D1 (provided by P. Sicinski) into

pBabeHygro vector cut with these two enzymes. pLXSN and pLXSN E7

retroviral vectors (Halbert et al., 1991) were given by K. Munger.

shRNA expression vectors corresponding to the siRNAs described above

were created by ligating synthetic, duplex oligonucleotides into pMKO.1 retro

viral vector (Boehm et al., 2005) or pCCLsin.PPT.hPGK.GFP.Wpre lentiviral

vector (Corso et al., 2008) (provided by S. Giordano). All plasmids were

confirmed by DNA sequencing.

Lentiviral Rb shRNA vectors, ARNT shRNA vectors, and lentiviral EglN2

shRNA (TRC00000324 328) were obtained from the Broad Institute TRC

shRNA library. Rb #1 shRNA target sequence: 50 CCACATTATTTCTAGTCCA

AA 30; Rb #2 shRNA target sequence: 50 CAGAGATCGTGTATTGAGATT 30;

ARNT target sequences: 50 CCTTTGTCTTTCTGTGTACTT 30 (Figure 1) and

50 GAGAAGTCAGATGGTTTATTT 30 (Figure S5); TRC00000324 328 shRNA

target sequences: 50 CGCATGGCAGACAGCTTAAAT 30; 50 GCTGCATCACC

TGTATCTATT 30; 50 GCCACTCTTTGACCGGTTGCT 30; 50 ACTGGGACGTTA

AGGTGCATG 30; 50 CTGGGACGTTAAGGTGCATGG 30, respectively. The

lentivirus encoding the HIF2a was a gift of S. Lee.

Virus Production and Infection

Phoenix packaging cell line was used for the generation of ecotropic retrovi

ruses and all retroviral infections were carried out as described previously

(Boehm et al., 2005). 293T packaging cell line was used for lentiviral amplifica

tion and all lentiviral infections were carried out as previously described (Moffat

et al., 2006). In brief, viruses were collected 48 and 72 hr after transfection,

filtered, and used for infecting cells in the presence of 8 mg/ml polybrene prior

to drug selection.

Microarray Analysis

The gene expression data set (www.ncbi.nlm.nih.gov/geo/; accession number

GSE5460) and immunohistochemical analysis of primary human breast tumors

used for Figure 3D was done as described in Lu et al. (2008). Raw expression

data obtained with Affymetrix GENECHIP software was normalized, analyzed,

and displayed with DNA Chip Analyzer (dChip) custom software (http://www.

dChip.org/). Array probe data were normalized to the mean expression level of
422 Cancer Cell 16, 413–424, November 3, 2009 ª2009 Elsevier Inc
each probe across the sample set. The analysis in Figure 3C and Figure S4 was

performed with data and software available at http://www.oncomine.org and

http://www.genesapiens.org, respectively.

For Figure S10 and Tables S1 S3, T47D breast carcinoma cells that were in

fected with lentivirus encoding either inducible EglN2 shRNA or Scrambled

control (Scr) shRNA were treated with doxycycline (1 mg/ml) for 48 hr or left

untreated. Total RNA was extracted by using RNeasy mini kit with on column

DNase digestion (QIAGEN). Biotin labeled cRNA was prepared from 1 mg of

total RNA, fragmented, and hybridized to a Human Gene 1.0ST array (Affyme

trix). The arrays were scanned and the data, as CEL files, were analyzed with

Affymetrix Expression Console. The data were normalized using RMA (Robust

Multi Array) normalization (Bolstad et al., 2003). All samples successfully

underwent a series of quality control tests and results from duplicate samples

were highly comparable (R > 0.967). Gene expression values less than

a minimum threshold of 20 or a maximum threshold of 16,000 were set to

20 and 16,000, respectively. Genes with minimal variation across the data

set were discarded (maximum/minimum < 3 or maximum minimum < 100).

GSEA was performed as described previously (Subramanian et al., 2005).

Cell Proliferation Assays

T47D, BT 474, and ZR 75 1 cells were plated, in triplicate, in 6 well plates

(105 cells/well) in RPMI supplemented with 10% FBS or in phenol red free

RPMI containing 5% charcoal stripped serum supplemented, as indicated,

with 10 nM estrogen. At the indicated time points, cells were trypsinized,

pelleted by centrifugation, and resuspended in RPMI supplemented with

0.2% Trypan blue. The number of viable cells, as determined by Trypan blue

exclusion, was determined with a hemocytometer.

shRNA Pooled Screening

Pooled RNAi screens consisting of 45,000 shRNAs were conducted as

described by Luo et al. (2008). In brief, an shRNA pool consisting of 45,182

individual constructs was infected into the indicated cancer cell lines. For

each screen, 3.6 3 107 cells were infected at a multiplicity of infection of

0.3 for ensuring that each shRNA was introduced into 200 independent cells.

Early time point (3 4 day) samples (n = 10) and DNA control samples (n = 10)

were compared with end time point (4 weeks) samples derived from replicate

(n = 10) infections of each cell line. Genomic DNA was prepared from these

time points and the hairpin region of shRNA constructs was amplified and

digested to create half hairpin barcodes that were hybridized to a custom

Affymetrix microarray. After microarray normalization, fold depletion scores

for EglN2 were calculated on a construct by construct basis by comparing

late time point hybridization values to early time point hybridization values.

RIGER Algorithm

RNAi gene enrichment ranking (RIGER), a statistical approach that considers

the phenotypic results for the multiple shRNA constructs targeting the same

gene, was deployed as described (Luo et al., 2008). Briefly, this approach is

based on the GSEA methodology (Subramanian et al., 2005) and uses similar

Kolmogorov Smirnov based statistics to calculate gene scores from a data

set of shRNA construct profiles. First, shRNA constructs targeting EglN2

were scored according to their differential effects between late and early

time points for each cell line. An Enrichment Score was calculated for each

cell line, indicating the enrichment or depletion for the five EglN2 hairpins

treated as a set. Finally, to find genes frequently essential across multiple

cell lines, a second application of RIGER was used to find genes for which

the hairpins targeting the gene were depleted in at least 8/12 cell lines.

Orthotopic Tumor Growth Assays

Six week old female nude mice (Taconic) were used for xenograft studies.

Approximately 8 3 106 viable tumor cells were resuspended in 40 ml growth

factor reduced Matrigel (BD Biosciences) and injected orthotopically into

mammary gland four as previously described (Minn et al., 2005). Mice were

supplied with chow containing 6 g doxycycline/kg (Bioserv) for a treatment

period of 5 6 weeks.

For bioluminescent detection and quantification of cancer cells, mice were

given a single i.p. injection of a mixture of luciferin (50 mg/kg), ketamine

(150 mg/kg), and xylazine (12 mg/kg) in sterile water. Five minutes later,

mice were placed in a light tight chamber equipped with a charge coupled
.

http://www.ncbi.nlm.nih.gov/geo/
http://www.dChip.org/
http://www.dChip.org/
http://www.oncomine.org
http://www.genesapiens.org
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device IVIS imaging camera (Xenogen). Photons were collected for a period of

1 60 s, and images were obtained by using LIVING IMAGE 2.60.1 software

(Xenogen) and quantified using IGOR Pro 4.09A image analysis software

(WaveMatrics). The total photons from the EglN2 shRNA tumor region of

interest (ROI) were divided by the total photons from Scrambled shRNA tumor

ROI and, for each mouse, normalized based on the ratio prior to the onset of

doxycycline treatment for that mouse. Results were presented as mean ±

standard error of the mean (SEM).

ACCESSION NUMBERS

Microarray data from T47D cells harvested 0 or 48 hr after induction of an

shRNA against EglN2 or a scrambled control shRNA were deposited in the

NIH Gene Expression Omnibus database (accession number GSE18171).
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