2,142 research outputs found
Dynamics of a tunable superfluid junction
We study the population dynamics of a Bose-Einstein condensate in a
double-well potential throughout the crossover from Josephson dynamics to
hydrodynamics. At barriers higher than the chemical potential, we observe slow
oscillations well described by a Josephson model. In the limit of low barriers,
the fundamental frequency agrees with a simple hydrodynamic model, but we also
observe a second, higher frequency. A full numerical simulation of the
Gross-Pitaevskii equation giving the frequencies and amplitudes of the observed
modes between these two limits is compared to the data and is used to
understand the origin of the higher mode. Implications for trapped matter-wave
interferometers are discussed.Comment: 8 pages, 7 figures; v3: Journal reference added, minor changes to
tex
Online removal of ocular artefacts from the electroencephalogram
A method by which ocular artefacts (OAs) in the electroencephalogram (EEG) may be removed automatically online by electro-oculogram (EOG) subtraction is demonstrated. This is achieved by a combination of recursively calculating the required cross-correlations, a fast matrix inversion method, and the use of a modem microprocessor with a high clock rate. Although recursive calculations are involved, the method itself is essentially non-recursive, which means that distortion of any evoked potentials is minimised. The method may be applied simultaneously to any number of EEG channels
Arson or fire setting in offenders with intellectual disability:Clinical characteristics, forensic histories, and treatment outcomes
The Hydro-electro-thermal Performance of Air-cooled, Open-cathode Polymer Electrolyte Fuel Cells: Combined Localised Current Density, Temperature and Water Mapping
In situ diagnostic techniques provide a means of understanding the internal workings of fuel cells so that improved designs and operating regimes can be identified. Here, a novel metrology approach is reported that combines current and temperature mapping with water visualisation using neutron radiography.
The approach enables a hydro-electro-thermal performance map to be generated that is applied to an air-cooled, open-cathode polymer electrolyte fuel cell. This type of fuel cell exhibits a particularly interesting coupled relationship between water, current and heat, as the air supply has the due role of cooling the stack as well as providing the cathode reactant feed via a single source. It is found that water predominantly accumulates under the cooling channels (thickness of 70-100 μm under the cooling channels and 5-25 μm in the active channels at 0.5 A cm−2), in a similar fashion to the lands in a closed-cathode design, but contrary to passive open-cathode systems. The relationship between current, temperature and water accumulation is complex and highly dependent on location within the cell. However, there is a general trend that higher currents and cooling limitations, especially above 0.7 A cm−2 and below 3.9 × 10−3 m3 s−1, leads to temperatures above 60 °C, which dehydrate the membrane (water thickness of 10-25 um) and the cell operates below 0.5 V
Breakdown of Scaling in the Nonequilibrium Critical Dynamics of the Two-Dimensional XY Model
The approach to equilibrium, from a nonequilibrium initial state, in a system
at its critical point is usually described by a scaling theory with a single
growing length scale, , where z is the dynamic exponent
that governs the equilibrium dynamics. We show that, for the 2D XY model, the
rate of approach to equilibrium depends on the initial condition. In
particular, if no free vortices are present in the
initial state, while if free vortices are
present.Comment: 4 pages, 3 figure
Definition of the σW regulon of Bacillus subtilis in the absence of stress
Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF σW regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF σX, σY, and σM regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly σW-regulated. Under these conditions, σW exhibits a basal level of activity. Subsequently, we verified the σW-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the σW anti-sigma factor RsiW and subsequent activation of the σW-regulon. Taken together, our studies identify 89 genes as being strictly σW-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of σW-dependent genes were relatively mild, which implies that σW-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via σW, but that this membrane protease also exerts other important post-transcriptional regulatory functions
Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits
Lithium-ion batteries are being used in increasingly demanding applications where safety and reliability are of utmost importance. Thermal runaway presents the greatest safety hazard, and needs to be fully understood in order to progress towards safer cell and battery designs. Here, we demonstrate the application of an internal short circuiting device for controlled, on-demand, initiation of thermal runaway. Through its use, the location and timing of thermal runaway initiation is pre-determined, allowing analysis of the nucleation and propagation of failure within 18 650 cells through the use of high-speed X-ray imaging at 2000 frames per second. The cause of unfavourable occurrences such as sidewall rupture, cell bursting, and cell-to-cell propagation within modules is elucidated, and steps towards improved safety of 18 650 cells and batteries are discussed
Tuning of metal-insulator transition of two-dimensional electrons at parylene/SrTiO interface by electric field
Electrostatic carrier doping using a field-effect-transistor structure is an
intriguing approach to explore electronic phases by critical control of carrier
concentration. We demonstrate the reversible control of the insulator-metal
transition (IMT) in a two dimensional (2D) electron gas at the interface of
insulating SrTiO single crystals. Superconductivity was observed in a
limited number of devices doped far beyond the IMT, which may imply the
presence of 2D metal-superconductor transition. This realization of a
two-dimensional metallic state on the most widely-used perovskite oxide is the
best manifestation of the potential of oxide electronics
Elementary forms and their dynamics: revisiting Mary Douglas
Mary Douglas's oeuvre furnishes the social sciences with one of the most profound and ambitious bodies of social theory ever to emerge from within anthropology. This article uses the occasion of the publication of Fardon's two volumes of her previously uncollected papers to restate her core arguments about the limited plurality of elementary forms of social organisation, about the institutional dynamics of conflict, and about conflict attenuation. In reviewing these two volumes, the article considers what those anthropologists who have been sceptical either of Douglas's importance or of the Durkheimian traditions generally, will want from these books to convince them to look afresh at her work. It concludes that the two collections will provide open-minded anthropologists with enough evidence of the creativity and significance of her achievement to encourage them to reopen her major theoretical works. An internal critique of some aspects of Douglas's handling of her arguments is offered, before the conclusion identifies the wider significance of her arguments for the social science
Host stage preference and parasitism behaviour of Aenasius bambawaleian an encyrtid parasitoid of Phenacoccus solenopsis
In Pakistan, the cotton mealybug, Phenacoccus solenopsis Tinsley (Sternorrhyncha (Homoptera): Pseudococcidae), is a serious pest of many cultivated plants. A parasitoid, Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae), is associated with P. solenopsis. In order to mass rear A. bambawalei for a biological control program, it is important to investigate the parasitoid’s host stage preference and its parasitism behavior for P. solenopsis in order to optimize production. The present tudy showed that under both choice and no choice conditions, the parasitoid preferred 3rd instar and pre-reproductive host stage mealybugs for parasitism. Parasitoid larva developing inside the host exhibited a greater longevity, shorter developmental period and longer body size in these preferred host stages. Our study also confirmed that A. bambawalei showed no attraction to male mealybugs and no host feeding on any host stage was recorded. The ability of the parasitoid to effectively discriminate between suitable and non-suitable stages means that it is feasible to rear it on a mixed population
- …
