5 research outputs found

    Reduced Amino Acid Specificity of Mammalian Tyrosyl-tRNA Synthetase is Associated with Elevated Mistranslation of Tyr Codons

    Get PDF
    Quality control operates at different steps in translation to limit errors to approximately one mistranslated codon per 10,000 codons during mRNA-directed protein synthesis. Recent studies have suggested that error rates may actually vary considerably during translation under different growth conditions. Here we examined the misincorporation of Phe at Tyr codons during synthesis of a recombinant antibody produced in tyrosine-limited Chinese hamster ovary (CHO) cells. Tyr to Phe replacements were previously found to occur throughout the antibody at a rate of up to 0.7% irrespective of the identity or context of the Tyr codon translated. Despite this comparatively high mistranslation rate, no significant change in cellular viability was observed. Monitoring of Phe and Tyr levels revealed that changes in error rates correlated with changes in amino acid pools, suggesting that mischarging of tRNATyr with noncognate Phe by tyrosyl-tRNA synthetase was responsible for mistranslation. Steady-state kinetic analyses of CHO cytoplasmic tyrosyl-tRNA synthetase revealed a 25-fold lower specificity for Tyr over Phe as compared with previously characterized bacterial enzymes, consistent with the observed increase in translation error rates during tyrosine limitation. Functional comparisons of mammalian and bacterial tyrosyl-tRNA synthetase revealed key differences at residues responsible for amino acid recognition, highlighting differences in evolutionary constraints for translation quality control

    Nonalbuminuric Renal Impairment in Type 2 Diabetic Patients and in the General Population (National Evaluation of the Frequency of Renal Impairment cO-existing with NIDDM [NEFRON] 11)

    Get PDF
    OBJECTIVE Most diabetic patients with impaired renal function have a urinary albumin excretion rate in the normal range. In these patients, the etiology of renal impairment is unclear, and it is also unclear whether this nonalbumunuric renal impairment is unique to diabetes. RESEARCH DESIGN AND METHODS In this study, we examined the frequency and predictors of nonalbumunuric renal impairment (estimated glomerular filtration rate [eGFR] <60 ml/min per 1.73 m(2)) in a nationally representative cohort of 3,893 patients with type 2 diabetes and compared our findings with rates observed in the general population from the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) survey (n = 11,247). RESULTS Of the 23.1% of individuals with type 2 diabetes who had eGFR <60 ml/min per 1.73 m(2) (95% CI 21.8-24.5%), more than half (55%) had a urinary albumin excretion rate that was persistently in the normal range. This rate of renal impairment was predictably higher than that observed in the general population (adjusted odds ratio 1.3, 95% CI 1.1-1.5, P < 0.01) but was solely due to chronic kidney disease associated with albuminuria. In contrast, renal impairment in the absence of albuminuria was less common in those with diabetes than in the general population, independent of sex, ethnicity, and duration of diabetes (0.6, 0.5-0.7, P < 0.001). CONCLUSIONS Nonalbuminuric renal impairment is not more common in those with diabetes. However, its impact may be more significant. New studies are required to address the pathogenesis, prevention, and treatment of nonalbuminuric renal disease

    Study Protocol - Accurate assessment of kidney function in Indigenous Australians: aims and methods of the eGFR Study

    Get PDF
    Background: There is an overwhelming burden of cardiovascular disease, type 2 diabetes and chronic kidney disease among Indigenous Australians. In this high risk population, it is vital that we are able to measure accurately kidney function. Glomerular filtration rate is the best overall marker of kidney function. However, differences in body build and body composition between Indigenous and non-Indigenous Australians suggest that creatinine-based estimates of glomerular filtration rate derived for European populations may not be appropriate for Indigenous Australians. The burden of kidney disease is borne disproportionately by Indigenous Australians in central and northern Australia, and there is significant heterogeneity in body build and composition within and amongst these groups. This heterogeneity might differentially affect the accuracy of estimation of glomerular filtration rate between different Indigenous groups. By assessing kidney function in Indigenous Australians from Northern Queensland, Northern Territory and Western Australia, we aim to determine a validated and practical measure of glomerular filtration rate suitable for use in all Indigenous Australians

    Reduced Amino Acid Specificity of Mammalian Tyrosyl-tRNA Synthetase Is Associated with Elevated Mistranslation of Tyr Codons

    Get PDF
    Quality control operates at different steps in translation to limit errors to approximately one mistranslated codon per 10,000 codons during mRNA-directed protein synthesis. Recent studies have suggested that error rates may actually vary considerably during translation under different growth conditions. Here we examined the misincorporation of Phe at Tyr codons during synthesis of a recombinant antibody produced in tyrosine-limited Chinese hamster ovary (CHO) cells. Tyr to Phe replacements were previously found to occur throughout the antibody at a rate of up to 0.7% irrespective of the identity or context of the Tyr codon translated. Despite this comparatively high mistranslation rate, no significant change in cellular viability was observed. Monitoring of Phe and Tyr levels revealed that changes in error rates correlated with changes in amino acid pools, suggesting that mischarging of tRNA(Tyr) with noncognate Phe by tyrosyl-tRNA synthetase was responsible for mistranslation. Steady-state kinetic analyses of CHO cytoplasmic tyrosyl-tRNA synthetase revealed a 25-fold lower specificity for Tyr over Phe as compared with previously characterized bacterial enzymes, consistent with the observed increase in translation error rates during tyrosine limitation. Functional comparisons of mammalian and bacterial tyrosyl-tRNA synthetase revealed key differences at residues responsible for amino acid recognition, highlighting differences in evolutionary constraints for translation quality control
    corecore