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Reduced Amino Acid Specificity of Mammalian Tyrosyl-tRNA
Synthetase Is Associated with Elevated Mistranslation of Tyr
Codons*
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Medha Raina‡, Adil Moghal‡, Amanda Kano§, Mathew Jerums§, Paul D. Schnier§, Shun Luo§, Rohini Deshpande§,
Pavel V. Bondarenko§, Henry Lin§, and Michael Ibba‡1

From the ‡Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University,
Columbus, Ohio 43210-1292 and §Amgen Incorporated, Thousand Oaks, California 91320-1799

Background: Translation of Tyr codons is highly prone to Phe misincorporation during amino acid limitation in CHO cells.
Results: CHO TyrRS is error-prone and readily aminoacylates tRNATyr with Phe.
Conclusion: Mammalian TyrRS has evolved to be significantly less accurate than its bacterial counterpart.
Significance: Different evolutionary constraints determine the accuracy of translation quality control in eukaryotes and bacteria.

Quality control operates at different steps in translation to limit
errors to approximately one mistranslated codon per 10,000
codons during mRNA-directed protein synthesis. Recent studies
have suggested that error rates may actually vary considerably dur-
ing translation under different growth conditions. Here we exam-
ined the misincorporation of Phe at Tyr codons during synthesis of
a recombinant antibody produced in tyrosine-limited Chinese
hamster ovary (CHO) cells. Tyr to Phe replacements were previ-
ously found to occur throughout the antibody at a rate of up to 0.7%
irrespective of the identity or context of the Tyr codon translated.
Despite this comparatively high mistranslation rate, no significant
change in cellular viability was observed. Monitoring of Phe and
Tyr levels revealed that changes in error rates correlated with
changes in amino acid pools, suggesting that mischarging of
tRNATyr with noncognate Phe by tyrosyl-tRNA synthetase was
responsible for mistranslation. Steady-state kinetic analyses of
CHO cytoplasmic tyrosyl-tRNA synthetase revealed a 25-fold
lower specificity for Tyr over Phe as compared with previously
characterized bacterial enzymes, consistent with the observed
increase in translation error rates during tyrosine limitation. Func-
tional comparisons of mammalian and bacterial tyrosyl-tRNA syn-
thetase revealed key differences at residues responsible for amino
acid recognition, highlighting differences in evolutionary con-
straints for translation quality control.

Translation accuracy is vital for the maintenance of cellular
integrity. Accuracy in protein synthesis is dependent on a com-
bination of sequential substrate recognition events, which
include the synthesis of correct aminoacyl tRNAs (aa-tRNA)2

by aminoacyl tRNA synthetases (aaRSs), binding of elongation
factor 1A (EF 1A) to the cognate aa-tRNA, and the selection of
the correct aa-tRNA by the ribosome. All these steps have their
own inherent error rate, which is thought to vary depending on
various environmental conditions. The overall error rate of
translation is generally believed to be 10�4 (1, 2), with the first
step, synthesis of aa-tRNA, being the most error-prone.
aa-tRNA synthesis is a two-step reaction: activation of an
amino acid with ATP to form aminoacyl adenylate, followed by
transfer of the aminoacyl moiety to the 3� end of the tRNA (3).
The error rate of this first step of translation is largely depen-
dent on the specificity of the aaRS, that is selection of the cor-
rect amino acid and tRNA from the respective cellular pools of
predominantly noncognate substrates. aaRSs select their cog-
nate tRNAs by exploiting sequence-specific differences
between various tRNAs during binding and aminoacylation,
thereby resulting in a low error rate of 10�6 at this step (4, 5). In
contrast, selection of the correct amino acid is often challenging
due to the lack of sufficient discriminating functional groups in
many amino acids and their analogs. To maintain a compara-
tively low error rate during translation, editing mechanisms
have evolved to discriminate between substrates with close
structural and chemical properties by hydrolyzing either the
activated noncognate amino acid (pre-transfer editing) or mis-
charged tRNA (post-transfer editing) (6). The high specificity
displayed by some aaRSs is also achieved by taking advantage of
the unique structural and chemical properties of certain amino
acids, leading to favorable binding affinities of cognate over
noncognate substrates in the active site of the enzyme. For
example, Phe and Tyr differ from each other by a single
hydroxyl group, the specific recognition and binding of which
allows bacterial tyrosyl-tRNA synthetase (TyrRS) to discrimi-
nate against noncognate Phe with a specificity of 105 (7).

Although quality control at different steps can limit errors to
approximately one mistranslated codon per 10,000 during
mRNA-directed protein synthesis (1, 2, 8), recent studies sug-
gest that error rates vary considerably during translation. In
Escherichia coli codon-specific differences in error rates of up
to 18-fold were observed using a luciferase reporter assay (2).

* This work was supported by National Science Foundation (NSF) Grant MCB-
1052344 (to M. I.) an NSF-Grant Opportunities for Academic Liaison with
Industry (NSF-GOALI) fellowship (to M. R) and NIH training grant fellow-
ships (GM008512 and GM086252 to A.M.).

1 To whom correspondence should be addressed: Dept. of Microbiology, The
Ohio State University, 484 West 12th Ave., Columbus, OH 43210. Tel.: 614-
292-2120; Fax: 614-292-8120; E-mail: ibba.1@osu.edu.

2 The abbreviations used are: aa-tRNA, aminoacyl tRNA(s); aaRS, aminoacyl
tRNA synthetase; TyrRS, tyrosyl-tRNA synthetase; PheRS, phenylalanyl-
tRNA synthetase; EMAP, endothelial monocyte-activating polypeptide.
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More dramatically, exposure of mammalian cells to a variety of
stresses elevates tRNA mischarging to levels that could poten-
tially lead to increases in the error rate of translation of 100-fold
or more for some codons (9, 10). In a recent study, misincorpo-
ration rates of up to 0.2–3% for Phe at Tyr codons during pro-
tein synthesis were reported in mammalian cell culture under
conditions of amino acid depletion (11). We now show that
CHO TyrRS has a lower than expected specificity for Tyr over
Phe, consistent with the previously observed error rates (11).
We further examined how the active site of the eukaryotic
enzyme evolved to confer lower specificity to the CHO TyrRS
as compared with the bacterial enzyme. Residues lost from the
eukaryotic enzyme but present in the bacterial counterpart
were found to be important for substrate recognition and dis-
crimination, illustrating how different evolutionary constraints
have shaped the specificities of bacterial and higher eukaryotic
TyrRS.

EXPERIMENTAL PROCEDURES

Cell Culture Experiment Setup and Analytics—CHO cells
producing a recombinant monoclonal antibody were grown in
chemically defined media. Tyrosine 2Na��2H2O (SAFC Biosci-
ences, Lenexa, KS) was used in the supplementation study. All
media and stock solutions were filter-sterilized at 0.1 �m. Cells
were grown in 500-ml vented shake flasks under 36 °C, 5% CO2,
and 160 rpm. The inoculation density was 1 � 106 cells/ml, and
the culture was grown for 16 days. Bolus feeds were added on
days 5, 7, 9, 11, and 13 at 9% of current working volume. Tyro-
sine supplement was added on days 9, 11, and 13 targeting a 1
mM addition to the culture. Glucose (Life Technologies) was
maintained in the range of 6 – 8 g/liter throughout production.
Viable cell density and viability were measured using a Cedex
automatic cell counter (Innovatis), and metabolites were mea-
sured using a NOVA BioProfile automated analyzer (NOVA
Biomedical). Values of pH, pO2, and pCO2 were analyzed by the
BioProfile pHox (NOVA Biomedical), and osmolality values
were measured by the model 2020 osmometer (Advanced
Instruments, Norwood, MA). Titer was measured by reverse-
phase HPLC (Waters, Milford, MA) using a protein A column
(Life Technologies). Free amino acids were measured by cation
exchange HPLC (Agilent Technologies, Santa Clara, CA).
HPLC-MS/MS analysis of amino acid substitutions in secreted
recombinant antibodies was performed as described previously
(12).

Cloning and Mutagenesis—The CHO TyrRS (EGW00102)
gene, codon-optimized for expression in E. coli, was synthe-
sized (GenScript) and subcloned under T7 promoter control
into pET33b vector at NcoI and XhoI restriction sites. The
resulting plasmid pET33b-TyrRS-His6 was used to transform
E. coli BL21 (DE3) cells. CHO TyrRS mutations were con-
structed by PCR amplification and DpnI digestion using stand-
ard techniques. All cloning and mutagenesis were confirmed by
sequencing, and the resulting plasmids were used to transform
E. coli BL21 XJB (DE3).

Purification of CHO TyrRS and Variant Proteins—Protein
was produced by growing the cells to an optical density at 600
nM (A600) of 0.6 at 37 °C, 250 rpm. Gene expression was induced
with 0.5 mM isopropyl-�-D-thiogalactoside for 4 h. Cells were

harvested; the pellet was resuspended in a buffer containing 25
mM Tris-HCl (pH 8.0), 300 mM NaCl, 10% glycerol, and 5 mM

imidazole, and flash-frozen using liquid N2 before storage at
�80 °C. Cell-free extract was produced by sonication of cells in
buffer A (25 mM Tris-HCl, pH 8.0, 300 mM NaCl, 5 mM imidaz-
ole, and 10% glycerol) containing a protease inhibitor mixture
tablet (Complete Mini, EDTA-free; Roche Applied Science) fol-
lowed by centrifugation at 150,000 � g for 45 min. The resulting
supernatant was loaded onto a pre-equilibrated 3-ml TALON�
resin metal affinity column (Clontech) followed by washing,
and the protein was eluted with buffer B (25 mM Tris-HCl, pH
8.0, 300 mM NaCl, 250 mM imidazole, and 5% glycerol). Frac-
tions containing the protein of interest (judged by Coomassie
Brilliant Blue staining after SDS-PAGE) were pooled and dia-
lyzed twice against buffer C (25 mM Tris-HCl, pH 7.5, 0.1 mM

EDTA, 10 Mm �-mercaptoethanol, and 5% glycerol) to remove
any bound tyrosyl-adenylate from TyrRS. The enzyme was fur-
ther dialyzed against two buffer changes of buffer D (50 mM

Tris-HCl, pH 7.5, 140 mM KCl, 20 mM �-mercaptoethanol, 10
mM MgCl2, and 5% glycerol) and finally against buffer D with
50% glycerol and stored at �20 °C. Mini-TyrRS was produced
as described for CHO TyrRS except that the region of pET33b-
TyrRS-His6 encoding the endothelial monocyte-activating
polypeptide (EMAP) II-like domain was removed.

Cloning and in Vitro Transcription of CHO tRNATyr—The
gene for CHO tRNATyr

GTA (CCTTCGATAGCTCAGTTGG-
TAGAGCGGAGGACTGTAGATCCTTAGGTCGCTGGTT-
CGATTCCGGCTCGAAGGACCA) was chosen from the var-
ious tRNATyr gene sequences predicted by tRNAscan-SE
analysis of the available CHO genome. The tRNA gene was
synthesized using synthetic DNA oligomers according to
standard procedures (13). The 5� nucleotide is a cytosine in
CHO tRNATyr

, which is a poor substrate for the T7 RNA
polymerase, hence a hammerhead ribozyme was ligated
between the T7 promoter and the tRNA sequence and cloned
into pUC19 vector using BamHI and HindIII restriction sites
to yield pUC19-T7 promoter-hammerhead ribozyme-CHO
tRNATyr. This plasmid was digested with BstNI to generate
3�-CCA and used as a template for run-off transcription using
T7 RNA polymerase. The tRNA transcript was purified on a
denaturing 15% polyacrylamide gel and extracted by electrodi-
alysis in 90 mM Tris borate/2 mM EDTA (pH 8.0). The tRNA
was phenol- and chloroform-extracted, ethanol-precipitated,
and resuspended in diethylpyrocarbonate-treated double-dis-
tilled dH2O.

Aminoacylation Assays—All aminoacylation reactions were
performed at 37 °C in a reaction mixture containing 144 mM

Tris-HCl, pH 7.78, 150 mM KCl, 10 mM MgCl2, 10 mM �-mer-
captoethanol, 0.1 mg/ml BSA, 5 mM ATP, either CHO total
tRNA or in vitro-transcribed CHO tRNATyr or E. coli tRNAPhe,
L-[U-14C]tyrosine (482 mCi/mmol) or L-[U-14C]phenylalanine
(487 mCi/mmol), and aaRSs at the indicated concentrations for
specific experiments. CHO total tRNA containing native
tRNATyr was prepared as described previously (14). The reac-
tion was initiated with the addition of enzyme. Aliquots of reac-
tion mixture were spotted on 3 MM filter paper presoaked in
5% TCA (w/v) at the required time intervals, washed in 5% TCA
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acid, and dried, and the level of radioactivity was determined by
scintillation counting.

Steady-state Kinetics—Steady-state kinetic assays were car-
ried out at 25 °C as described previously (15, 16). Reactions
were carried out in buffer containing 144 mM Tris-HCl, pH
7.78, 150 mM KCl, 10 mM MgCl2, 10 mM �-mercaptoethanol,
and 2 mM PPi. For ATP-PPi exchange assays to measure amino
acid activation (17), concentrations of substrates were varied
from 0.5 to 500 �M for Tyr and from 0.5 to 47 mM for Phe.
Enzymes were added to a final concentration of 75 nM–5 �M.
Kinetic parameters were calculated by fitting data to the
Michaelis-Menten equation using nonlinear regression
(KaleidaGraph, Synergy Software) and are presented as aver-
ages from three independent reactions with the corresponding
standard errors.

RESULTS

Tyr Starvation Negatively Affects Cell Culture Performance—
During growth of CHO cell cultures, Tyr starvation was observed
in the latter half of fed-batch production with residual concen-
trations ranging from 0 to 500 �M, whereas Phe concentrations
were maintained between 5 and 9 mM (Fig. 1, A and B). The
routine decrease of Tyr concentration to zero during this
period indicated that the intermittent feed was insufficient to
support the culture’s utilization of Tyr. A corresponding drop
in recombinant protein-specific productivity, qp, on day 9 was
observed despite the abundance of Phe in the culture, leading to
a 3-fold reduction in qp by day 16 (Fig. 1C). The slope of the titer
curve was also lowered as qp decreased and titer dropped by 1
g/liter at day 16 (Fig. 1D), and a drop in cell viability followed
after day 11 (Fig. 1E). In the same experiment, Tyr supplemen-
tation was also tested in a separate culture with additions on
days 9, 11, and 13. As a result, qp was maintained at a high level
leading to the continual linear rise of the titer curve, whereas
cell viability also significantly improved (Fig. 1, C–E). Cell
growth was not impacted by Tyr starvation as shown by similar
integrated viable cell density trends under the two conditions
(Fig. 1F). Amino acid analysis showed that depletion of Tyr was
prevented with the additional Tyr supplementation (Fig. 1A).
Residual Phe concentrations remained similar in both condi-
tions (Fig. 1B). Analyses of the secreted recombinant antibodies
produced by these cultures showed multiple Phe misincorpo-
ration at a rate of �0.7% per Tyr codon during Tyr starvation.
In the culture that was not depleted of Tyr, Phe misincorpora-
tion at Tyr codons was not observed (�0.01%).

CHO TyrRS Has Low Specificity for Tyr over Phe—The
observed changes in amino acid pools, as well as the absence of
codon context or usage effects on misincorporation rates, sug-
gest that mistranslation may result from errors during the ami-
noacylation of tRNATyr by TyrRS. To assess the specificity of
amino acid activation by CHO cytoplasmic TyrRS, the corre-
sponding gene sequence (EGW00102) was codon-optimized
for protein production in E. coli. CHO TyrRS was found to
misactivate Phe (Fig. 2A), and the specificity for Tyr over Phe
was found to be 6100:1 (Table 1). The amino acid specificity of
CHO TyrRS was almost 25-fold lower than that of the well
characterized bacterial TyrRS from Geobacillus stearothermo-

philus (7), indicating a substantial reduction in the discrimina-
tion of near cognate amino acid in the eukaryotic enzyme.

Misacylation of tRNATyr by TyrRS—The comparatively low
specificity of CHO TyrRS for Tyr over Phe during amino acid
activation prompted us to investigate the ability of the enzyme
to mischarge tRNATyr with Phe. Candidate tRNATyr genes
encoded in the CHO genome were identified using the
tRNAscan-SE software package (18). Two sequences, tRNATyr1

and tRNATyr2, were chosen from among the various candidates
based on their similarity to known tRNATyr genes from related
organisms. The two genes were used as templates for in vitro
transcription, and both resulting tRNATyr variants were found
to be equally efficient substrates for aminoacylation with tyro-
sine by TyrRS. CHO TyrRS had a Km for tRNATyr2 of 3 � 1 �M

and a kcat of 33 � 5 s�1, both values within the range typically
observed for in vitro-transcribed tRNAs with aaRSs, and this
substrate was used for all further analyses. CHO TyrRS was able
to attach Phe to both tRNATyr2 and CHO total tRNA contain-
ing native tRNATyr (Fig. 2, B and C), excluding the possibility
that mischarging resulted from the lack of post-transcriptional
modifications to the in vitro-transcribed substrate. Aminoacy-
lation reactions were also performed using E. coli tRNAPhe with
CHO TyrRS and CHO tRNATyr with E. coli PheRS to exclude
the possibility that the mischarging observed was due to charg-
ing of CHO tRNATyr by an E. coli PheRS contaminant in the
CHO TyrRS protein preparation (Fig. 3, A and B).

The Endothelial Monocyte-activating Polypeptide II-like
Domain of CHO TyrRS Does Not Compromise Amino Acid
Specificity—During apoptosis mammalian TyrRS is cleaved,
releasing two fragments, an N-terminal mini-TyrRS and the
EMAP II-like C-terminal domain, both of which are active cyto-
kines (19). To investigate whether mini-TyrRS accumulation
impacts mistranslation, the ability of the truncated enzyme to
discriminate noncognate Phe was characterized. Mini-TyrRS
activated and aminoacylated Phe and Tyr (Fig. 4, A–C), and the
kinetic parameters for amino acid activation were found to be
similar to those for full-length TyrRS (Table 1). These results
indicate that the presence of the C-terminal EMAP II-domain
has no effect on the recognition of cognate Tyr and discrimina-
tion against noncognate Phe, and so would not be expected to
affect the level of mistranslation of Tyr codons.

Comparison of Bacterial and CHO TyrRS Substrate Specific-
ity Determinants—Comparison of TyrRS active site structures
with Tyr bound would provide an ideal means to evaluate how
the CHO enzyme evolved to have lower substrate specificity
than its bacterial counterpart. Because the crystal structure
of the CHO enzyme is not available, we compared the G. stearo-
thermophilus (Protein Data Bank (PDB) 1tyd) and human (PDB
1q11) TyrRS active sites. The active site of G. stearothermophi-
lus TyrRS has been studied in detail; the residues that make
hydrogen-bonding interactions with the substrate tyrosine
include Tyr-34, Asp-176, Tyr-169, Asp-78, and Gln-173. Com-
parison with the active sites of human and CHO TyrRS revealed
that most of these residues are conserved except for Asp-78, the
equivalent of which is an Asn residue in eukaryotes (Fig. 5).
Mutation of CHO Asn-82 to Asp had minimal effect on the kcat
and Km of Tyr and Phe, suggesting that the Asn residue is not
important for substrate binding in the eukaryotic enzyme
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(Table 2). Most of the hydrophobic interactions in the CHO
active site appear conserved except for Ala-74 and His-77,
which are Gly and Thr, respectively, at the corresponding posi-
tions in the bacterial enzyme (Fig. 5). Replacement of Ala-74
with Gly increased the Km 7-fold and had no effect on kcat for
Tyr. The kcat/Km for Phe decreased 5-fold. Mutation of His-77
to the smaller nonhydrophobic Thr increased the Km and
decreased the kcat by 40-fold (Table 2). Substitutions that
remove hydrophobic interactions typically lead to a loss of 1–2
kcal/mol of the interaction energy, consistent with the observed

increase in the Km for Tyr. Several other positions not con-
served between bacteria and eukaryotes are residues Cys-35,
His-48, Thr-51, and Lys-233 in bacterial TyrRS, which interact
with ATP during transition state formation (Fig. 5) (20). The
CHO TyrRS counterparts of these residues are Trp-40, Tyr-52,
Pro-55, and Ser-225, all of which lack interactions with ATP
(Fig. 5). Despite the absence of these interactions with ATP in
the eukaryotic enzyme, the stabilities of the transition states for
Tyr activation have been shown to be virtually identical for the
human and G. stearothermophilus enzymes. Stabilization of the

FIGURE 1. Effect of Tyr on CHO cells producing a recombinant monoclonal antibody. A, residual Tyr concentration. B, residual Phe concentration. C, specific
productivity. D, titer. E, percentage of viability. F, integrated viable cell density (IVCD). Symbols: dashed line (�), cell culture without Tyr supplementation; solid
line (f), cell culture with Tyr supplementation. Arrows indicate timing of tyrosine addition. Cells were grown in chemically defined media.
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transition state in eukaryotic TyrRS is potentially achieved by
interaction of a potassium ion, which has been shown to replace
Lys-233, and Pro-55, which is believed to replace the Thr-51
interaction with ATP (21). To determine whether differences in
ATP binding affect activation of cognate and noncognate sub-
strates, the CHO residues Trp-40 and Tyr-52 were replaced
with their bacterial equivalents, Cys and His, respectively, to
generate single amino acid substitutions. The W40C mutation
caused a 30-fold decrease of kcat for Tyr activation and a 30-fold
increase of Km. The kcat/Km for Phe activation decreased 2000-
fold, but no significant difference in the specificity for Tyr over
Phe was observed, indicating that Trp-40 is not involved in
amino acid discrimination. The Y52H mutation led to a 2-fold
increase in Km and a 20-fold decrease in kcat. The kcat/Km for
Phe decreased 280-fold, thereby increasing the specificity of
the enzyme 6-fold. Replacement of Tyr-52 may disrupt a pos-

sible cation-� interaction between the aromatic ring of Tyr and
the catalytically important potassium ion, consistent with the
large decrease in kcat observed.

Hydrogen-bonding interactions between bacterial TyrRS
residues Asp-176 and Tyr-34 and the substrate Tyr hydroxyl
group help confer amino acid specificity to the enzyme (7, 22).
These residues also hydrogen-bond other residues surrounding
the inner core of residues that interact directly with substrate;
for example Trp-126 and Asn-123 are both hydrogen-bonded
to Asp-176 (Fig. 6). Trp-126 and Asn-123 are not conserved
across the three domains of life, the equivalent residues in
eukaryotes being Tyr and Gly, respectively (Fig. 6). The similar-
ity between bacterial and CHO TyrRS is around 16%, and a
number of possible alignments were used, together with avail-
able crystal structures, to guide further mutagenesis. Compar-
ing the G. stearothermophilus TyrRS and human TyrRS crystal
structure indicated that CHO Gly-120 is present at the position
corresponding to Asn-123 and lacks hydrogen-bonding inter-
actions with any residue, which could potentially interact with
the OH group of Tyr (Fig. 6). Replacing Gly-120 with Asn
resulted in a 70-fold increase in Km, an 11-fold decrease in kcat

for Tyr, and a 280-fold decreased kcat/Km for Phe. Replacement
of Tyr-123 (equivalent to bacterial Trp-126) with Trp had min-
imal effect on the kcat and Km of Tyr and Phe activation. When
additional alignment-directed mutations were made (Fig. 7), a
slight increase in the specificity for the cognate amino acid Tyr

FIGURE 2. Activation and charging of Phe by TyrRS. A and B, ATP-PPi exchange assay of CHO TyrRS (250 nM) in the presence of 5 mM Phe (A) or Tyr (B) and CHO
TyrRS (75 nM) in the presence of 100 �M Tyr (inset) at 37 °C. Error bars indicate � S.D. C, aminoacylation of CHO tRNATyr (4 �M) by CHO TyrRS (100 nM) in the
presence of 200 �M Phe (f) or 200 �M Tyr (●) and TyrRS (100 nM) in the presence of 100 �M Tyr without tRNA (�) at 37 °C. D, aminoacylation reaction was carried
out by CHO TyrRS (100 nM) in the presence of either 6 �M native tRNATyr (f) or 6 �M in vitro-transcribed tRNA (●) and 200 �M Phe at 37 °C.

TABLE 1
Steady-state kinetic constants for ATP-[32P]PPi exchange for CHO
cytosolic full length (FL) and mini-TyrRS

Tyr Phea

(kcat/Km)
Specificityb,

Tyr/PheKm kcat kcat/Km

�M s�1 s�1/�M s�1/�M

CHO FL TyrRS 14.6 � 4 12.5 � 2 0.85 1.4 � 10�4 6100
CHO mini-TyrRS 16 � 0.6 15 � 3 0.93 1.15 � 10�4 8100

a kcat/Km was estimated using subsaturating Phe concentrations from the slope of
the equation, V 	 kcat [E][S]/Km.

b Measured in kcat/Km.
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was observed. Replacement of Leu-125 with the bacterial equiv-
alent Trp had no effect on the kcat/Km for either Tyr or Phe;
however, changing Asp-122 to Asn led to 40-fold increased
kcat/Km for Phe but had no effect on the Km and kcat of Tyr
activation, leading to 3-fold increases in the specificity of the
CHO enzyme. These changes indicate that Asp-122 is involved
in the discrimination of cognate over noncognate amino acid.

DISCUSSION

Amino Acid Imbalance Increases Translation Error Rates—
aaRSs maintain translational fidelity either by accurate binding
of the correct amino acid or by proofreading and editing of
noncognate products. Previous studies have shown that errors

in translation can occur randomly at a rate of about 4 � 10�4 to
5 � 10�5 per codon or 0.005– 0.04% per site under normal
growth conditions (23, 24). Various studies have suggested that
error rates in protein synthesis can increase under a variety of
conditions such as oxidative stress, (9, 10, 25), changes in codon
bias (26, 27), genetic heterogeneity (28), heterologous overpro-
duction (29), and amino acid starvation (24). To determine the
rate and extent of mistranslation under different conditions,
accurate detection and quantification of amino acid misincor-
poration are critical (30, 31). Aside from the technical chal-
lenges, measuring mistranslation is further complicated by the
expectation that misincorporation could lead to protein mis-
folding and subsequent degradation by the cellular protein

FIGURE 3. Mischarging of Phe by CHO TyrRS is not due to E. coli PheRS contamination. A and B, aminoacylation of 6 �M E. coli tRNAPhe (f) and 6 �M CHO
tRNATyr (●) in the presence of 150 �M [14C] Phe CHO TyrRS (100 nM) (A) and E. coli PheRS (100 nM) (B) at 37 °C. Error bars indicate � S.D.

FIGURE 4. Activation and charging of Phe by mini-TyrRS. A and B, ATP-PPi exchange assay of CHO mini-TyrRS (250 nM) in the presence of 5 mM Phe (A) or Tyr
(B) and CHO mini-TyrRS (75 nM) in the presence of 100 �M Tyr (inset) at 37 °C. Error bars indicate � S.D. C, aminoacylation of CHO tRNATyr (4 �M) by CHO
mini-TyrRS (100 nM) in the presence of 200 �M Phe (f) or 200 �M Tyr (●) at 37 °C. Error bars indicate � S.D.
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FIGURE 5. Hydrogen-bonding and hydrophobic interaction between TyrRS and tyrosyl-adenylate. A, the image shows a comparison of the hydrogen-
bonding interaction between TyrRS and substrate tyrosine. The image corresponds to a superposition of G. stearothermophilus and human TyrRS from PDB files
1tyd (chain E) and 1q11 (chain A). G. stearothermophilus TyrRS is in gold, human TyrRS is in cyan, and substrate tyrosine in the active site is in green. Amino acids
making hydrogen-bonding and hydrophobic interactions are numbered with human TyrRS numbering in parentheses. B, hydrogen bonding between the
tyrosyl adenylate and TyrRS in the active site of G. stearothermophilus with CHO TyrRS numbering in parentheses. MC, main chain.
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quality control machinery. This potential problem can be partly
addressed by measuring misincorporation rates in a secreted
recombinant antibody, which revealed Phe substitutions at Tyr
codons at an overall error rate of �0.7% during Tyr starvation.
The higher than expected level of Tyr to Phe misincorporation
was effectively suppressed by supplementing the medium with
Tyr, indicating that the increase in error rate was due to an
imbalance in cellular amino acid pools. Amino acid imbalances
are encountered by mammalian cells under various conditions
such as, for example, bacterial infections that trigger acute
intracellular amino acid starvation due to host membrane dam-
age (32) or cancer tumor microenvironments that become
nutritionally deprived due to rapid cell proliferation. Our find-
ings suggest that under such growth conditions, protein syn-
thesis error rates may also rise significantly, but whether this
would be expected to have beneficial or detrimental effects on
the cell is unclear and may depend on the level of mistranslation
in a particular system (31).

Misincorporation of Phe at Tyr Codons Is due to Mischarging
of tRNATyr—It has previously been proposed that aaRSs should
exhibit a selectivity of at least 3000-fold for cognate over non-
cognate amino acids to maintain error rates below 10�4 during
translation (33). Selectivity is the product of the specificity of
the aaRS and the ratio of cognate versus noncognate amino acid
(34). The specificity of bacterial TyrRS for Tyr over Phe is 10�5

(7), and the Phe: Tyr ratio in a dividing bacterial cell is typically
around 1.9:1 (35). These two factors combined give a rate of
misincorporation comparable with other amino acid pairs and
show that, in the absence of an editing mechanism, bacterial
TyrRS can discriminate between tyrosine and phenylalanine by
simple preferential binding and activation. In the case of CHO
TyrRS, steady-state kinetic analysis revealed a lower specificity
of 6100 for Tyr over Phe as compared with the value of 150,000
reported for bacterial TyrRS. Under Tyr starvation the relative
concentration of Phe to Tyr was as high as 18:1, thereby
decreasing the selectivity for cognate over noncognate amino
acid to around 350:1. Hence, although the selectivity of CHO
TyrRS is above the threshold of 3000:1 under normal growth
conditions, it is significantly lower during Tyr limitation and
results in mistranslation. This increased susceptibility to trans-
lation errors observed in higher eukaryotes as compared with
bacteria suggests that protein synthesis quality control has
evolved with different constraints in each kingdom. On a prac-
tical level, our data also illustrate the utility of determining opti-
mal cognate to noncognate amino acid concentrations in the
medium to overcome poor aaRS specificity and mitigate tRNA
mischarging. This approach of understanding specificity
requirements may be applicable to reduce other amino acid
misincorporation caused by tRNA mischarging such as Ser3
Asn in CHO-produced antibodies (24).

Divergence in Amino Acid Discrimination between Bacterial
and Eukaryotic TyrRS—Bacterial TyrRS displays high specific-
ity toward its cognate amino acid Tyr as compared with the
noncognate substrate Phe (7). Our results demonstrate that
higher eukaryotic TyrRSs have evolved to have a lower specific-
ity for Tyr over Phe than their bacterial counterparts (Table 1).
Although the active site residues in G. stearothermophilus and
human tyrosyl-tRNA synthetases are largely conserved, several
key differences exist between the two enzymes. Asp-78 medi-
ates one important hydrogen-bonding interaction missing
from the eukaryotic enzyme in the bacterial system, which is
located in a loop region between helix �4 and helix �5. This

TABLE 2
Steady-state kinetic constants for ATP-[32P]PPi exchange for CHO cytosolic full length wild type and variant TyrRS

TyrRS
variant Disrupted contact

Tyr Phea

(kcat/Km)
Specificityb,

Tyr/PheKm kcat kcat/Km

�M s�1 s�1/�M s�1/�M kcat/Km
WT 15 � 4 13 � 2 0.85 1.4 � 10�4 � 3.5 � 10�5 6100
W40C 510 � 200 0.4 � 0.14 7.9 � 10�4 7.3 � 10�8 � 9 � 10�9 10,850
Y52H 36 � 4 0.7 � 0.04 0.018 5 � 10�7 � 1 � 10�7 36,000
A74G Hydrophobic 103 � 45 12 � 6 0.11 2.7 � 10�5 � 1 � 10�5 4100
H77T Hydrophobic 640 � 51 0.3 � 0.02 4.7 � 10�4 7.3 � 10�8 � 1.4 � 10�9 6500
N82D Hydrogen bonding with substrate 42 � 16 5 � 2 0.12 1.9 � 10�5 � 1.5 � 10�6 6300
G120N 2° hydrogen bonding 1070 � 50 1.2 � 0.2 1.2 � 10�3 5 � 10�7 � 4 � 10�8 2400
Y123W 2° hydrogen bonding 42 � 2 7.3 � 0.85 0.18 2.3 � 10�5 � 6.2 � 10�6 7800
D122N 2° hydrogen bonding 15 � 2 9 � 0.7 0.6 3 � 10�5 � 1 � 10�5 20,000
L125W 2° hydrogen bonding 12 � 0.4 8.3 � 1.2 0.72 1.3 � 10�4 � 1.4 � 10�5 6000

a kcat/Km was estimated using subsaturating Phe concentrations from the slope of the equation, V 	 kcat [E][S]/Km.
b Measured in kcat/Km.

FIGURE 6. Hydrogen-bonding network of G. stearothermophilus TyrRS
Asp-176 (CHO Asp-173). The image shows the specificity site of TyrRS
formed by two residues that interact directly with the tyrosine hydroxyl (sub-
strate) by hydrogen bonding: Asp-176 and Tyr-34 with CHO numbering in
parentheses. The image corresponds to a superposition of G. stearothermo-
philus and human TyrRS from PDB files 1tyd (chain E) and 1q11 (chain A).
G. stearothermophilus TyrRS is in gold, human TyrRS is in cyan, and sub-
strate tyrosine in the active site is in green. Amino acids making hydrogen-
bonding interactions are numbered with human/CHO TyrRS numbering in
parentheses.

Reduced Specificity of Mammalian TyrRS

JUNE 20, 2014 • VOLUME 289 • NUMBER 25 JOURNAL OF BIOLOGICAL CHEMISTRY 17787



loop is located at the entrance to the tyrosine-binding site and
undergoes a substantial conformational change upon binding
of the substrate. This loop region of the bacterial enzyme is also

more hydrophilic than its eukaryotic counterpart. In the
eukaryotic enzyme, the loop provides a hydrophobic lid over
the tyrosine-binding pocket and the conformational change is

FIGURE 7. Alignment of amino acid sequences for TyrRS. The alignment shown is based on the ClustalW alignment of TyrRS amino acid sequences from G. stearo-
thermophilus, E. coli, Thermococcus kodakarensis, Homo sapiens, S. cerevisiae (cytoplasmic), and CHO. Shaded regions indicate highly conserved amino acids.

Reduced Specificity of Mammalian TyrRS

17788 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 289 • NUMBER 25 • JUNE 20, 2014



thought to play a role in sequestering the activated amino acid
from water during the catalytic reaction (36). The active site of
the eukaryotic TyrRS also has two hydrophobic interactions,
via His-77 and Ala-74, which are missing in the bacterial
enzyme. His-77 was found to be important for substrate bind-
ing (Table 2), illustrating how the eukaryotic enzyme has
evolved in a way that may improve binding of the more hydro-
phobic phenylalanine in the active site of CHO TyrRS. In addi-
tion to differences in direct enzyme-substrate interactions,
changes in the hydrogen-bonding network are also evident in
the eukaryotic TyrRS. Secondary interaction between the cata-
lytically important Asp-173 and residue Asp-122 in the eukary-
otic enzyme was found to contribute to discrimination between
the cognate versus the noncognate substrate. This residue is
located on helix �6 and the loop connecting helix �2 and �6 and
could influence specificity by, for example, inducing a confor-
mational change in the loop itself or by altering the protein
backbone conformation as shown recently for aspartate amino-
transferase (37). Mutation of Tyr-52, which is located in the
ATP-binding region, removes a potential interaction with the
catalytically important potassium ion, which must be replaced,
by an interaction somewhere else in the protein. This mutation
decreases Phe activation more than Tyr, thereby generating a
TyrRS variant with 6-fold higher specificity for the cognate
amino acid. The future deployment of aaRS variants with
improved amino acid specificity, as described here, may help to
significantly reduce elevated amino acid misincorporation dur-
ing heterologous protein over production.

Aminoacyl-tRNA synthetases have drawn interest as poten-
tial targets for the development of new antibiotics. For example,
a series of related competitive inhibitors that bind 40,000-fold
more tightly to Staphylococcus aureus than to Saccharomyces
cerevisiae TyrRS has been identified (38, 39). The selectivity of
these inhibitors is consistent with the differences described
here between the active sites of the bacterial and eukaryotic
enzymes, and supports the utility of TyrRS as a target for anti-
microbial therapeutics.
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