9 research outputs found

    The neutral amino acid transporter SLC7A10 in adipose tissue, obesity and insulin resistance

    Get PDF
    Obesity, insulin resistance and type 2 diabetes represent major global health challenges, and a better mechanistic understanding of the altered metabolism in these conditions may give improved treatment strategies. SLC7A10, a member of the SLC7 subfamily of solute carriers, also named ASC-1 (alanine, serine, cysteine transporter-1), has recently been implicated as an important modulator of core processes in energy- and lipid metabolism, through its particularly high expression in adipocytes. In human cohorts, adipose SLC7A10 mRNA shows strong inverse correlations with insulin resistance, adipocyte size and components of the metabolic syndrome, strong heritability, and an association with type 2 diabetes risk alleles. SLC7A10 has been proposed as a marker of white as opposed to thermogenic beige and brown adipocytes, supported by increased formation of thermogenic beige adipocytes upon loss of Slc7a10 in mouse white preadipocytes. Overexpression of SLC7A10 in mature white adipocytes was found to lower the generation of reactive oxygen species (ROS) and stimulate mitochondrial respiratory capacity, while SLC7A10 inhibition had the opposite effect, indicating that SLC7A10 supports a beneficial increase in mitochondrial activity in white adipocytes. Consistent with these beneficial effects, inhibition of SLC7A10 was in mouse and human white adipocyte cultures found to increase lipid accumulation, likely explained by lowered serine uptake and glutathione production. Additionally, zebrafish with partial global Slc7a10b loss-of-function were found to have greater diet-induced body weight and larger visceral adipocytes compared to controls. However, challenging that SLC7A10 exerts metabolic benefits only in white adipocytes, suppression of SLC7A10 has been reported to decrease mitochondrial respiration and expression of thermogenic genes also in some beige and brown adipocyte cultures. Taken together, the data point to an important but complex role of SLC7A10 in metabolic regulation across different adipose tissue depots and adipocyte subtypes. Further research into SLC7A10 functions in specific adipocyte subtypes may lead to new precision therapeutics for mitigating the risk of insulin resistance and type 2 diabetes.publishedVersio

    Metabolic and Epigenetic Regulation by Estrogen in Adipocytes

    Get PDF
    Sex hormones contribute to differences between males and females in body fat distribution and associated disease risk. Higher concentrations of estrogens are associated with a more gynoid body shape and with more fat storage on hips and thighs rather than in visceral depots. Estrogen-mediated protection against visceral adiposity is shown in post-menopausal women with lower levels of estrogens and the reduction in central body fat observed after treatment with hormone-replacement therapy. Estrogen exerts its physiological effects via the estrogen receptors (ERα, ERβ and GPR30) in target cells, including adipocytes. Studies in mice indicate that estrogen protects against adipose inflammation and fibrosis also before the onset of obesity. The mechanisms involved in estrogen-dependent body fat distribution are incompletely understood, but involve, e.g., increased mTOR signaling and suppression of autophagy and adipogenesis/lipid storage. Estrogen plays a key role in epigenetic regulation of adipogenic genes by interacting with enzymes that remodel DNA methylation and histone tail post-translational modifications. However, more studies are needed to map the differential epigenetic effects of ER in different adipocyte subtypes, including those in subcutaneous and visceral adipose tissues. We here review recent discoveries of ER-mediated transcriptional and epigenetic regulation in adipocytes, which may explain sexual dimorphisms in body fat distribution and obesity-related disease risk.publishedVersio

    Role of the Neutral Amino Acid Transporter SLC7A10 in Adipocyte Lipid Storage, Obesity and Insulin Resistance

    Get PDF
    Elucidation of mechanisms that govern lipid storage, oxidative stress, and insulin resistance may lead to improved therapeutic options for type 2 diabetes and other obesity-related diseases. Here, we find that adipose expression of the small neutral amino acid transporter SLC7A10, also known as alanine-serine-cysteine transporter-1 (ASC-1), shows strong inverse correlates with visceral adiposity, insulin resistance, and adipocyte hypertrophy across multiple cohorts. Concordantly, loss of Slc7a10 function in zebrafish in vivo accelerates diet-induced body weight gain and adipocyte enlargement. Mechanistically, SLC7A10 inhibition in human and murine adipocytes decreases adipocyte serine uptake and total glutathione levels and promotes reactive oxygen species (ROS) generation. Conversely, SLC7A10 overexpression decreases ROS generation and increases mitochondrial respiratory capacity. RNA sequencing revealed consistent changes in gene expression between human adipocytes and zebrafish visceral adipose tissue following loss of SLC7A10, e.g., upregulation of SCD (lipid storage) and downregulation of CPT1A (lipid oxidation). Interestingly, ROS scavenger reduced lipid accumulation and attenuated the lipid-storing effect of SLC7A10 inhibition. These data uncover adipocyte SLC7A10 as a novel important regulator of adipocyte resilience to nutrient and oxidative stress, in part by enhancing glutathione levels and mitochondrial respiration, conducive to decreased ROS generation, lipid accumulation, adipocyte hypertrophy, insulin resistance, and type 2 diabetes.acceptedVersio

    Role of Adipocyte SLC7A10 and Amino Acid Metabolism in Obesity and Insulin Resistance

    Get PDF
    Obesity is a rising global concern, associated with increased risk of developing metabolic syndrome, insulin resistance and type 2 diabetes. Chronic availability of excess nutrients may promote adipocyte dysfunction, especially in genetically susceptible individuals. Adipocyte amino acid transporter SLC7A10 and branched chain amino acid (BCAA) metabolism has recently been strongly associated with obesity and related disease, and dissection of the underlying molecular mechanisms may provide novel therapeutic targets. The aim of the present study was to uncover novel mechanisms linking adipocyte SLC7A10, BCAA uptake and catabolism, and 3-hydroxyisobutyric acid (3-HIB) release to adiposity, insulin resistance and T2D. In Paper 1, we performed a global transcriptome screen of adipose tissue in the context of obesity and insulin resistance, and identified SLC7A10 as a novel candidate gene in the regulation of adipocyte metabolism. We overfed Slc7a10 WT and loss-of-function mutant zebrafish, resulting in visceral adipocyte hypertrophy and higher weight gain for the mutants. Inhibition of SLC7A10 in adipocytes in vitro caused reduced serine uptake, total glutathione levels, insulin-dependent glucose uptake and mitochondrial respiratory capacity, while promoting increased ROS generation and lipid accumulation. Conversely, SLC7A10 overexpression showed the opposite effects on mitochondrial respiration and ROS compared to inhibition. In Paper 2, we found that BCAA consumption and catabolism is increased during adipogenesis of human as well as brown and white mouse adipocytes in vitro. Knockdown of the 3-HIB generating enzyme HIBCH reduced adipocyte lipid storage and 3-HIB release. 3-HIB treatment affected respiration and ROS generation in opposite directions in white and brown mouse adipocytes. In Paper 3, we performed a gene set enrichment analysis (GSEA) of RNA-sequencing data from SLC7A10 impaired human primary adipocytes, and found increased expression of genes related to lipid metabolism, TCA cycle and amino acid catabolism. Upon SLC7A10 inhibition, adipocytes showed increased uptake of BCAAs, aspartate, glutamate, and increased efflux of 3-HIB. Overall, we have identified SLC7A10 and 3-HIB as regulators of adipocyte metabolism. Our work points to activation of adipocyte SLC7A10 as a potential preventive and/or therapeutic strategy for metabolic diseases, and implicates 3-HIB as a strong marker reflective of increased lipid accumulation, obesity and comorbidities

    The neutral amino acid transporter SLC7A10 in adipose tissue, obesity and insulin resistance

    No full text
    Obesity, insulin resistance and type 2 diabetes represent major global health challenges, and a better mechanistic understanding of the altered metabolism in these conditions may give improved treatment strategies. SLC7A10, a member of the SLC7 subfamily of solute carriers, also named ASC-1 (alanine, serine, cysteine transporter-1), has recently been implicated as an important modulator of core processes in energy- and lipid metabolism, through its particularly high expression in adipocytes. In human cohorts, adipose SLC7A10 mRNA shows strong inverse correlations with insulin resistance, adipocyte size and components of the metabolic syndrome, strong heritability, and an association with type 2 diabetes risk alleles. SLC7A10 has been proposed as a marker of white as opposed to thermogenic beige and brown adipocytes, supported by increased formation of thermogenic beige adipocytes upon loss of Slc7a10 in mouse white preadipocytes. Overexpression of SLC7A10 in mature white adipocytes was found to lower the generation of reactive oxygen species (ROS) and stimulate mitochondrial respiratory capacity, while SLC7A10 inhibition had the opposite effect, indicating that SLC7A10 supports a beneficial increase in mitochondrial activity in white adipocytes. Consistent with these beneficial effects, inhibition of SLC7A10 was in mouse and human white adipocyte cultures found to increase lipid accumulation, likely explained by lowered serine uptake and glutathione production. Additionally, zebrafish with partial global Slc7a10b loss-of-function were found to have greater diet-induced body weight and larger visceral adipocytes compared to controls. However, challenging that SLC7A10 exerts metabolic benefits only in white adipocytes, suppression of SLC7A10 has been reported to decrease mitochondrial respiration and expression of thermogenic genes also in some beige and brown adipocyte cultures. Taken together, the data point to an important but complex role of SLC7A10 in metabolic regulation across different adipose tissue depots and adipocyte subtypes. Further research into SLC7A10 functions in specific adipocyte subtypes may lead to new precision therapeutics for mitigating the risk of insulin resistance and type 2 diabetes

    Metabolic and Epigenetic Regulation by Estrogen in Adipocytes

    No full text
    Sex hormones contribute to differences between males and females in body fat distribution and associated disease risk. Higher concentrations of estrogens are associated with a more gynoid body shape and with more fat storage on hips and thighs rather than in visceral depots. Estrogen-mediated protection against visceral adiposity is shown in post-menopausal women with lower levels of estrogens and the reduction in central body fat observed after treatment with hormone-replacement therapy. Estrogen exerts its physiological effects via the estrogen receptors (ERα, ERβ and GPR30) in target cells, including adipocytes. Studies in mice indicate that estrogen protects against adipose inflammation and fibrosis also before the onset of obesity. The mechanisms involved in estrogen-dependent body fat distribution are incompletely understood, but involve, e.g., increased mTOR signaling and suppression of autophagy and adipogenesis/lipid storage. Estrogen plays a key role in epigenetic regulation of adipogenic genes by interacting with enzymes that remodel DNA methylation and histone tail post-translational modifications. However, more studies are needed to map the differential epigenetic effects of ER in different adipocyte subtypes, including those in subcutaneous and visceral adipose tissues. We here review recent discoveries of ER-mediated transcriptional and epigenetic regulation in adipocytes, which may explain sexual dimorphisms in body fat distribution and obesity-related disease risk

    Impaired Adipocyte SLC7A10 Promotes Lipid Storage in Association With Insulin Resistance and Altered BCAA Metabolism

    Get PDF
    Context The neutral amino acid transporter SLC7A10/ASC-1 is an adipocyte-expressed gene with reduced expression in insulin resistance and obesity. Inhibition of SLC7A10 in adipocytes was shown to increase lipid accumulation despite decreasing insulin-stimulated uptake of glucose, a key substrate for de novo lipogenesis. These data imply that alternative lipogenic substrates to glucose fuel continued lipid accumulation during insulin resistance in obesity. Objective We examined whether increased lipid accumulation during insulin resistance in adipocytes may involve alter flux of lipogenic amino acids dependent on SLC7A10 expression and activity, and whether this is reflected by extracellular and circulating concentrations of marker metabolites. Methods In adipocyte cultures with impaired SLC7A10, we performed RNA sequencing and relevant functional assays. By targeted metabolite analyses (GC-MS/MS), flux of all amino acids and selected metabolites were measured in human and mouse adipose cultures. Additionally, SLC7A10 mRNA levels in human subcutaneous adipose tissue (SAT) were correlated to candidate metabolites and adiposity phenotypes in 2 independent cohorts. Results SLC7A10 impairment altered expression of genes related to metabolic processes, including branched-chain amino acid (BCAA) catabolism, lipogenesis, and glyceroneogenesis. In 3T3-L1 adipocytes, SLC7A10 inhibition increased fatty acid uptake and cellular content of glycerol and cholesterol. SLC7A10 impairment in SAT cultures altered uptake of aspartate and glutamate, and increased net uptake of BCAAs, while increasing the net release of the valine catabolite 3- hydroxyisobutyrate (3-HIB). In human cohorts, SLC7A10 mRNA correlated inversely with total fat mass, circulating triacylglycerols, BCAAs, and 3-HIB. Conclusion Reduced SLC7A10 activity strongly affects flux of BCAAs in adipocytes, which may fuel continued lipogenesis during insulin resistance, and be reflected in increased circulating levels of the valine-derived catabolite 3-HIB.Peer reviewe

    Role of the Neutral Amino Acid Transporter SLC7A10 in Adipocyte Lipid Storage, Obesity and Insulin Resistance

    No full text
    Elucidation of mechanisms that govern lipid storage, oxidative stress, and insulin resistance may lead to improved therapeutic options for type 2 diabetes and other obesity-related diseases. Here, we find that adipose expression of the small neutral amino acid transporter SLC7A10, also known as alanine-serine-cysteine transporter-1 (ASC-1), shows strong inverse correlates with visceral adiposity, insulin resistance, and adipocyte hypertrophy across multiple cohorts. Concordantly, loss of Slc7a10 function in zebrafish in vivo accelerates diet-induced body weight gain and adipocyte enlargement. Mechanistically, SLC7A10 inhibition in human and murine adipocytes decreases adipocyte serine uptake and total glutathione levels and promotes reactive oxygen species (ROS) generation. Conversely, SLC7A10 overexpression decreases ROS generation and increases mitochondrial respiratory capacity. RNA sequencing revealed consistent changes in gene expression between human adipocytes and zebrafish visceral adipose tissue following loss of SLC7A10, e.g., upregulation of SCD (lipid storage) and downregulation of CPT1A (lipid oxidation). Interestingly, ROS scavenger reduced lipid accumulation and attenuated the lipid-storing effect of SLC7A10 inhibition. These data uncover adipocyte SLC7A10 as a novel important regulator of adipocyte resilience to nutrient and oxidative stress, in part by enhancing glutathione levels and mitochondrial respiration, conducive to decreased ROS generation, lipid accumulation, adipocyte hypertrophy, insulin resistance, and type 2 diabetes
    corecore