107 research outputs found
Trained and Amphetamine-Induced Circling Behavior in Lesioned, Transplanted Rats
Rats were trained to turn for water
reinforcement and then were given unilateral 6-
hydroxydopamine lesions. After lesion, rats
showed deficits in trained turning both contraand
ipsilateral to the side of the lesion, with
contralateral turning more severely impaired.
The lesioned rats were then transplanted with
fetal mesencephalic dopamine tissue into
striatum. A control group of lesioned rats were
sham transplanted. Four weeks after transplant,
1.5 mg/kg D-amphetamine challenge injections
were used to test the functioning of the
transplants. In the control rats, D-amphetamine
induced ipsilateral turning; in transplanted rats,
D-amphetamine slowed the rate of ipsilateral
turning or reversed the direction of
amphetamine-induced rotation. Only rats which
reversed their, amphetamine-induced turn
direction after transplant were used for the rest
of the experiment. Trained turning was assessed
at 4, 8, 12 and 16 weeks post transplant.
Transplants did not improve learned
performance at any time post transplant. When
D-amphetamine was administered in
conjunction with the trained turning sessions, a
low dose (0.12 mg/kg) enhanced contralateral
trained turn rates, without affecting ipsilateral
turn rates. Higher doses of amphetamine
reduced ipsilateral turn rate in the transplanted
animals. The results of this study suggest that
transplants alone do not reinstate performance
of conditioned rotation
Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats.
BackgroundMultiple factors contribute to the etiology of addiction, including genetics, sex, and a number of addiction-related behavioral traits. One behavioral trait where individuals assign incentive salience to food stimuli ("sign-trackers", ST) are more impulsive compared to those that do not ("goal-trackers", GT), as well as more sensitive to drugs and drug stimuli. Furthermore, this GT/ST phenotype predicts differences in other behavioral measures. Recent studies have implicated the gut microbiota as a key regulator of brain and behavior, and have shown that many microbiota-associated changes occur in a sex-dependent manner. However, few studies have examined how the microbiome might influence addiction-related behaviors. To this end, we sought to determine if gut microbiome composition was correlated with addiction-related behaviors determined by the GT/ST phenotype.MethodsOutbred male (N=101) and female (N=101) heterogeneous stock rats underwent a series of behavioral tests measuring impulsivity, attention, reward-learning, incentive salience, and locomotor response. Cecal microbiome composition was estimated using 16S rRNA gene amplicon sequencing. Behavior and microbiome were characterized and correlated with behavioral phenotypes. Robust sex differences were observed in both behavior and microbiome; further analyses were conducted within sex using the pre-established goal/sign-tracking (GT/ST) phenotype and partial least squares differential analysis (PLS-DA) clustered behavioral phenotype.ResultsOverall microbiome composition was not associated to the GT/ST phenotype. However, microbial alpha diversity was significantly decreased in female STs. On the other hand, a measure of impulsivity had many significant correlations to microbiome in both males and females. Several measures of impulsivity were correlated with the genus Barnesiella in females. Female STs had notable correlations between microbiome and attentional deficient. In both males and females, many measures were correlated with the bacterial families Ruminocococcaceae and Lachnospiraceae.ConclusionsThese data demonstrate correlations between several addiction-related behaviors and the microbiome specific to sex
Time Discounting: Declining Impatience and Interval Effect
Most studies have not distinguished delay from intervals, so that whether the declining impatience really holds has been an open question. We conducted an experiment that explicitly distinguishes them, and confirmed the declining impatience. This implies that people make dynamically inconsistent plans. We also found the interval effect that the per-period time discount rate decreases with prolonged intervals. We show that the interval and the magnitude effects are caused, at least partially, because subjects' choices are influenced by the differential in reward amount, while Weber's law solves neither the delay nor the interval effects
Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats
Background: Multiple factors contribute to the etiology of addiction, including genetics, sex, and a number of addiction-related behavioral traits. One behavioral trait where individuals assign incentive salience to food stimuli (â sign-trackersâ , ST) are more impulsive compared to those that do not (â goal-trackersâ , GT), as well as more sensitive to drugs and drug stimuli. Furthermore, this GT/ST phenotype predicts differences in other behavioral measures. Recent studies have implicated the gut microbiota as a key regulator of brain and behavior, and have shown that many microbiota-associated changes occur in a sex-dependent manner. However, few studies have examined how the microbiome might influence addiction-related behaviors. To this end, we sought to determine if gut microbiome composition was correlated with addiction-related behaviors determined by the GT/ST phenotype. Methods: Outbred male (N=101) and female (N=101) heterogeneous stock rats underwent a series of behavioral tests measuring impulsivity, attention, reward-learning, incentive salience, and locomotor response. Cecal microbiome composition was estimated using 16S rRNA gene amplicon sequencing. Behavior and microbiome were characterized and correlated with behavioral phenotypes. Robust sex differences were observed in both behavior and microbiome; further analyses were conducted within sex using the pre-established goal/sign-tracking (GT/ST) phenotype and partial least squares differential analysis (PLS-DA) clustered behavioral phenotype. Results: Overall microbiome composition was not associated to the GT/ST phenotype. However, microbial alpha diversity was significantly decreased in female STs. On the other hand, a measure of impulsivity had many significant correlations to microbiome in both males and females. Several measures of impulsivity were correlated with the genus Barnesiella in females. Female STs had notable correlations between microbiome and attentional deficient. In both males and females, many measures were correlated with the bacterial families Ruminocococcaceae and Lachnospiraceae. Conclusions: These data demonstrate correlations between several addiction-related behaviors and the microbiome specific to sex
Recommended from our members
Physiological Adaptations to Progressive Endurance Exercise Training in Adult and Aged Rats: Insights from the Molecular Transducers of Physical Activity Consortium (MoTrPAC)
While regular physical activity is a cornerstone of health, wellness, and vitality, the impact of endurance exercise training on molecular signaling within and across tissues remains to be delineated. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to characterize molecular networks underlying the adaptive response to exercise. Here, we describe the endurance exercise training studies undertaken by the Preclinical Animal Sites Studies component of MoTrPAC, in which we sought to develop and implement a standardized endurance exercise protocol in a large cohort of rats. To this end, Adult (6-mo) and Aged (18-mo) female (n = 151) and male (n = 143) Fischer 344 rats were subjected to progressive treadmill training (5 d/wk, ∼70%-75% VO2max) for 1, 2, 4, or 8 wk; sedentary rats were studied as the control group. A total of 18 solid tissues, as well as blood, plasma, and feces, were collected to establish a publicly accessible biorepository and for extensive omics-based analyses by MoTrPAC. Treadmill training was highly effective, with robust improvements in skeletal muscle citrate synthase activity in as little as 1-2 wk and improvements in maximum run speed and maximal oxygen uptake by 4-8 wk. For body mass and composition, notable age- and sex-dependent responses were observed. This work in mature, treadmill-trained rats represents the most comprehensive and publicly accessible tissue biorepository, to date, and provides an unprecedented resource for studying temporal-, sex-, and age-specific responses to endurance exercise training in a preclinical rat model
Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments
Rowena F. Stern is with University of British Columbia, Ales Horak is with University of British Columbia, Rose L. Andrew is with University of British Columbia, Mary-Alice Coffroth is with State University of New York at Buffalo, Robert A. Andersen is with the Bigelow Laboratory for Ocean Sciences, Frithjof C. Küpper is with the Scottish Marine Institute, Ian Jameson is with CSIRO Marine and Atmospheric Research, Mona Hoppenrath is with the German Center for Marine Biodiversity Research, Benoît Véron is with University of Caen Lower Normandy and the National Institute for Environmental Studies, Fumai Kasai is with the National Institute for Environmental Studies, Jerry Brand is with UT Austin, Erick R. James is with University of British Columbia, Patrick J. Keeling is with University of British Columbia.Background -- Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments. Methodology/Principal Findings -- In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. Conclusions/Significance -- COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of natural diversity in dinoflagellates. This highlights the extent to which we underestimate microbial diversity in the environment.This project was funded by Genome Canada and the Canadian Barcode of Life Network. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o
Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine
Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Recommended from our members
The bii4africa dataset of faunal and floral population intactness estimates across Africa’s major land uses
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species’ population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate ‘intactness scores’: the remaining proportion of an ‘intact’ reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region’s major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/ taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems
The bii4africa dataset of faunal and floral population intactness estimates across Africa’s major land uses
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species’ population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate ‘intactness scores’: the remaining proportion of an ‘intact’ reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region’s major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems
- …