143 research outputs found

    Geographic Proximity Not a Prerequisite for Invasion: Hawaii Not the Source of California Invasion by Light Brown Apple Moth (Epiphyas postvittana)

    Get PDF
    BACKGROUND: The light brown apple moth (LBAM), Epiphyas postvittana (Walker), is native to Australia but invaded England, New Zealand, and Hawaii more than 100 years ago. In temperate climates, LBAM can be a major agricultural pest. In 2006 LBAM was discovered in California, instigating eradication efforts and quarantine against Hawaiian agriculture, the assumption being that Hawaii was the source of the California infestation. Genetic relationships among populations in Hawaii, California, and New Zealand are crucial to understanding LBAM invasion dynamics across the Pacific. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced mitochondrial DNA (mtDNA) from 1293 LBAM individuals from California (695), Hawaii (448), New Zealand (147), and Australia (3) to examine haplotype diversity and structure among introduced populations, and evaluate the null hypothesis that invasive populations are from a single panmictic source. However, invasive populations in California and New Zealand harbor deep genetic diversity, whereas Hawaii shows low level, shallow diversity. CONCLUSIONS/SIGNIFICANCE: LBAM recently has established itself in California, but was in Hawaii and New Zealand for hundreds of generations, yet California and New Zealand show similar levels of genetic diversity relative to Hawaii. Thus, there is no clear relationship between duration of invasion and genetic structure. Demographic statistics suggest rapid expansion occurring in California and past expansions in New Zealand; multiple introductions of diverse, genetically fragmented lineages could contribute to these patterns. Hawaii and California share no haplotypes, therefore, Hawaii is not the source of the California introduction. Paradoxically, Hawaii and California share multiple haplotypes with New Zealand. New Zealand may be the source for the California and Hawaii infestations, but the introductions were independent, and Hawaii was invaded only once. This has significant implications for quarantine, and suggests that probability of invasion is not directly related to geographic distance. Surprisingly, Hawaiian LBAM populations have much lower genetic diversity than California, despite being older

    Understanding your water test report (1995)

    Get PDF
    "New 7/93, Reprinted 4/95/5M.""Water Quality.""Focus area : drinking water.""Published by University Extension. University of Missouri-Columbia.""Reviewed and adapted for Missouri by Wanda Eubank, Jerry Carpenter, Bev Maltsberger, University of Missouri-Columbia, and Nix Anderson, Missouri Department of Health, from Understanding Your Water Test Report by Michael H. Bradshaw, Health and Safety Extension Specialist and G. Morgan Powell, Natural Resource Engineer, Kansas State University.

    Systematics of the Argyrotaenia franciscana (Lepidoptera: Tortricidae) species group: evidence from mitochondrial

    Get PDF
    ABSTRACT Moths of the Argyrotaenia franciscana species group represent a challenging case of evolutionary lability and taxonomic complexity in California. We studied their evolutionary relationships using mitochondrial DNA (mtDNA) sequences from 49 specimens in 18 populations of the A. franciscana group, as well as 2 outgroup species. Most specimens were sequenced over a 799-bp segment of the cytochrome oxidase subunit I (COI) gene. Single specimens each of A. franciscana insulana Powell and A. citrana (Fernald) were sequenced over a 2.3-kb region including COI, tRNA leucine (UUR), and cytochrome oxidase subunit II (COII). mtDNA variation within and among Argyrotaenia citrana, A. franciscana (Walsingham), and A. franciscana insulana is most simply interpreted as DNA polymorphism within a single species for which the oldest name is A. franciscana. Maximal divergence among haplotypes was 3.8%, which is on the high end of the range for intraspeciÞc mtDNA variation in Lepidoptera. Argyrotaenia niscana (Kearfott) is most closely related to a new species, and this pair forms the closest outgroup to the A. franciscana-citrana complex. The status of A. isolatissima Powell remains uncertain

    Rhetoric But Whose Reality? The Influence of Employability Messages on Employee Mobility Tactics and Work Group Identification

    Get PDF
    Over the last decade, employability has been presented by its advocates as the solution to employment uncertainty, and by its critics as a management rhetoric possessing little relevance to the experiences of most workers. This article suggests that while employability has failed to develop into a key research area, a deeper probing of its message is warranted. In particular, it is suggested that employability may have resonance with employees as workers rather than as employees of their immediate employing organisation. This demands a slightly different approach to studying employability than some other related phenomena such as employee commitment which has resonance only in relation to the employing organization. In adopting a social identity approach, the significance of the employability message is shown not only to lie in employees’ willingness to disassociate from their existing work groups and pursue individual mobility, but also in its capacity to undermine workers’ collective responses to grievances and unwanted organizational changes. A future research agenda is presented which highlights the need to address recent attempts to develop employability expectations among graduate career entrants, and for a closer critical engagement with management writings that attempt to justify the unnecessary espousal of the self development message

    A genome-wide association study of resistance to HIV infection in highly exposed uninfected individuals with hemophilia A

    Get PDF
    Human genetic variation contributes to differences in susceptibility to HIV-1 infection. To search for novel host resistance factors, we performed a genome-wide association study (GWAS) in hemophilia patients highly exposed to potentially contaminated factor VIII infusions. Individuals with hemophilia A and a documented history of factor VIII infusions before the introduction of viral inactivation procedures (1979-1984) were recruited from 36 hemophilia treatment centers (HTCs), and their genome-wide genetic variants were compared with those from matched HIV-infected individuals. Homozygous carriers of known CCR5 resistance mutations were excluded. Single nucleotide polymorphisms (SNPs) and inferred copy number variants (CNVs) were tested using logistic regression. In addition, we performed a pathway enrichment analysis, a heritability analysis, and a search for epistatic interactions with CCR5 Δ32 heterozygosity. A total of 560 HIV-uninfected cases were recruited: 36 (6.4%) were homozygous for CCR5 Δ32 or m303. After quality control and SNP imputation, we tested 1 081 435 SNPs and 3686 CNVs for association with HIV-1 serostatus in 431 cases and 765 HIV-infected controls. No SNP or CNV reached genome-wide significance. The additional analyses did not reveal any strong genetic effect. Highly exposed, yet uninfected hemophiliacs form an ideal study group to investigate host resistance factors. Using a genome-wide approach, we did not detect any significant associations between SNPs and HIV-1 susceptibility, indicating that common genetic variants of major effect are unlikely to explain the observed resistance phenotype in this populatio

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    High Density SNP Screen in A Large Multiplex Neural Tube Defect Family Refines Linkage to Loci at 7p21-Pter And 2q33.1-35

    Get PDF
    Neural tube defects (NTDs) are considered complex with both genetic and environmental factors implicated. To date, no major causative genes have been identified in humans despite several investigations. The first genomewide screen in NTDs (Rampersaud et al. 2005) demonstrated evidence of linkage to chromosomes 7 and 10. This screen included forty-four multiplex families and consisted of 402 microsatellite markers spaced approximately 10 cM apart. Further investigation of the genomic screen data identified a single large multiplex family, pedigree 8776, as primarily driving the linkage results on chromosome 7

    The contribution of dynamic stromal remodeling during mammary development to breast carcinogenesis

    Get PDF
    Breast cancer is a heterogeneous disease whose prognosis varies depending upon the developmental stage of the breast tissue at diagnosis. Notably, breast cancers associated with pregnancy exhibit increased rates of metastasis and poorer long-term survival compared to those diagnosed after menopause. However, postmenopausal breast cancers associated with obesity exhibit a more aggressive behavior and confer decreased overall patient survival compared to those diagnosed in non-obese individuals. Since the mammary gland is a dynamic tissue that undergoes significant changes throughout a woman's lifetime, especially during pregnancy and following menopause, we present evidence to support the notion that changes occurring throughout development within the mammary stromal compartment may account for some of the biological differences in breast cancer subtypes and behaviors

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore