16 research outputs found

    SPIRITUALITY, RELIGIOSITY AND NATIONALISM FROM THE PERSPECTIVE OF PUBLIC AND GLOBAL MENTAL HEALTH

    Get PDF
    Despite the intensive globalization and an attractive idea of human cosmopolitism the world is still divided into rival nations and religions, with confronting ethics and many war conflicts across the globe producing and perpetuating huge mental health problems. Radicalism, malignant nationalism, pathological religiosity and violent extremism and terrorism are important issues from the public and global mental health perspective. Public and global mental health research can inform preventive strategies and interventions against malignant nationalism, pathological religiosity and violent extremism. Healthy spirituality, sound religiosity and normal nationalism may contribute significantly to public and global mental health and promotion of empathic civilization. The aim of this paper is to address, stress and support mutual understanding and creative cooperation between religions and nations in promotion of public and global mental health, research, patient care and education

    Neurophysiologic markers of primary motor cortex for laryngeal muscles and premotor cortex in caudal opercular part of inferior frontal gyrus investigated in motor speech disorder : a navigated transcranial magnetic stimulation (TMS) study

    Get PDF
    Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca's area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 +/- A 2.07 ms and CoMEP amplitude was 294.47 +/- A 208.87 A mu V, and in stuttering subjects CoMEP latency was 12.13 +/- A 0.75 ms and 504.64 +/- A 487.93 A mu V CoMEP amplitude. The latency of LLR in control subjects was 52.8 +/- A 8.6 ms and 54.95 +/- A 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.Peer reviewe

    Neurophysiologic markers of primary motor cortex for laryngeal muscles and premotor cortex in caudal opercular part of inferior frontal gyrus investigated in motor speech disorder : a navigated transcranial magnetic stimulation (TMS) study

    Get PDF
    Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca's area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 +/- A 2.07 ms and CoMEP amplitude was 294.47 +/- A 208.87 A mu V, and in stuttering subjects CoMEP latency was 12.13 +/- A 0.75 ms and 504.64 +/- A 487.93 A mu V CoMEP amplitude. The latency of LLR in control subjects was 52.8 +/- A 8.6 ms and 54.95 +/- A 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.Peer reviewe

    Na međi umetnosti i inženjerstva : studije o posleratnoj arhitekturi u Beogradu i Srbiji [45. Salon arhitekture]

    Get PDF
    Publikacija je rezultat višegodišnje saradnje sa gostujućim prof. Lukom Skansijem u sklopu predmeta »Posebni problemi istraživanja arhitekture i urbanizma« na prvoj godini doktorskih studija. Tema trogodišnjeg ciklusa predavanja i diskusija, koje je vodio prof. Luka Skansi između 2015. i 2017. godine, bio je pojam tektonike u arhitekturi, odnosno razvoj tog teoretskog i analitičkog pojma od sredine devetnaestog veka do danas. Studenti su bili pozvani da za svoj seminarski rad izvedu složenu i iscrpnu tektonsku analizu na jednoj relevantnoj arhitekturi izgrađenoj u Srbiji u kontekstu socijalističke Jugoslavije, u periodu između pedesetih i osamdesetih godina prošlog veka

    New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex

    No full text
    Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites’ quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films’ electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time

    Thermal Properties of PEDOT-compl-PSS Sensor Yarns and Textile Reinforced Thermoplastic Composites

    Get PDF
    Smart textile structures such as sensor yarns provide real possibility for in situ structural health monitoring of textile reinforced thermoplastic composites. In this work thermal properties of E-glass/polypropylene (GF/PP) and E-glass/poly(N,N’-hexamethylene adipamide) (GF/PA66) sensor yarns based on conductive polymer complex [3,4(ethylenedioxy)thiophene]-compl-poly(4-vinylbenzenesulfonic acid) (PEDOT-compl-PSS) and related composites were studied. Thermogravimetric analysis (TGA), microscale combustion calorimetry (MCC) and limiting oxygen index (LOI) methods were used to detect thermal behaviour of these structures and effect of coatings applied. According to TGA, GF/PP sensor yarn started to decompose at higher temperature, 345 °C, and showed higher pyrolysis residue, 28 %, compared to GF/PA66 sensor yarn that started to decompose at 316 °C and had lower pyrolysis residue, 23 % . The MCC showed that Heat Release Rate peaks of GF/PP sensor yarn, 341 W/g, and GF/PA66 sensor yarn, 348 W/g, occurred at similar Heat Release Temperature, ~ 430 °C. The additional peak, 51 W/g, was detected for GF/PP sensor yarn at 493 °C. Finally, LOI 22 and LOI 23 were detected only for GF/PP and GF/PA66 composites with integrated sensor yarns
    corecore