3,073 research outputs found

    The Aemulus Project III: Emulation of the Galaxy Correlation Function

    Get PDF
    Using the N-body simulations of the AEMULUS Project, we construct an emulator for the non-linear clustering of galaxies in real and redshift space. We construct our model of galaxy bias using the halo occupation framework, accounting for possible velocity bias. The model includes 15 parameters, including both cosmological and galaxy bias parameters. We demonstrate that our emulator achieves ~ 1% precision at the scales of interest, 0.1<r<10 h^{-1} Mpc, and recovers the true cosmology when tested against independent simulations. Our primary parameters of interest are related to the growth rate of structure, f, and its degenerate combination fsigma_8. Using this emulator, we show that the constraining power on these parameters monotonically increases as smaller scales are included in the analysis, all the way down to 0.1 h^{-1} Mpc. For a BOSS-like survey, the constraints on fsigma_8 from r<30 h^{-1} Mpc scales alone are more than a factor of two tighter than those from the fiducial BOSS analysis of redshift-space clustering using perturbation theory at larger scales. The combination of real- and redshift-space clustering allows us to break the degeneracy between f and sigma_8, yielding a 9% constraint on f alone for a BOSS-like analysis. The current AEMULUS simulations limit this model to surveys of massive galaxies. Future simulations will allow this framework to be extended to all galaxy target types, including emission-line galaxies.Comment: 14 pages, 8 figures, 1 table; submitted to ApJ; the project webpage is available at https://aemulusproject.github.io ; typo in Figure 7 and caption updated, results unchange

    The Aemulus Project I: Numerical Simulations for Precision Cosmology

    Get PDF
    The rapidly growing statistical precision of galaxy surveys has lead to a need for ever-more precise predictions of the observables used to constrain cosmological and galaxy formation models. The primary avenue through which such predictions will be obtained is suites of numerical simulations. These simulations must span the relevant model parameter spaces, be large enough to obtain the precision demanded by upcoming data, and be thoroughly validated in order to ensure accuracy. In this paper we present one such suite of simulations, forming the basis for the AEMULUS Project, a collaboration devoted to precision emulation of galaxy survey observables. We have run a set of 75 (1.05 h^-1 Gpc)^3 simulations with mass resolution and force softening of 3.51\times 10^10 (Omega_m / 0.3) ~ h^-1 M_sun and 20 ~ h^-1 kpc respectively in 47 different wCDM cosmologies spanning the range of parameter space allowed by the combination of recent Cosmic Microwave Background, Baryon Acoustic Oscillation and Type Ia Supernovae results. We present convergence tests of several observables including spherical overdensity halo mass functions, galaxy projected correlation functions, galaxy clustering in redshift space, and matter and halo correlation functions and power spectra. We show that these statistics are converged to 1% (2%) for halos with more than 500 (200) particles respectively and scales of r>200 ~ h^-1 kpc in real space or k ~ 3 h Mpc^-1 in harmonic space for z\le 1. We find that the dominant source of uncertainty comes from varying the particle loading of the simulations. This leads to large systematic errors for statistics using halos with fewer than 200 particles and scales smaller than k ~ 4 h^-1 Mpc. We provide the halo catalogs and snapshots detailed in this work to the community at https://AemulusProject.github.io.Comment: 16 pages, 12 figures, 3 Tables Project website: https://aemulusproject.github.io

    The Aemulus Project II: Emulating the Halo Mass Function

    Get PDF
    Existing models for the dependence of the halo mass function on cosmological parameters will become a limiting source of systematic uncertainty for cluster cosmology in the near future. We present a halo mass function emulator and demonstrate improved accuracy relative to state-of-the-art analytic models. In this work, mass is defined using an overdensity criteria of 200 relative to the mean background density. Our emulator is constructed from the AEMULUS simulations, a suite of 40 N-body simulations with snapshots from z=3 to z=0. These simulations cover the flat wCDM parameter space allowed by recent Cosmic Microwave Background, Baryon Acoustic Oscillation and Type Ia Supernovae results, varying the parameters w, Omega_m, Omega_b, sigma_8, N_{eff}, n_s, and H_0. We validate our emulator using five realizations of seven different cosmologies, for a total of 35 test simulations. These test simulations were not used in constructing the emulator, and were run with fully independent initial conditions. We use our test simulations to characterize the modeling uncertainty of the emulator, and introduce a novel way of marginalizing over the associated systematic uncertainty. We confirm non-universality in our halo mass function emulator as a function of both cosmological parameters and redshift. Our emulator achieves better than 1% precision over much of the relevant parameter space, and we demonstrate that the systematic uncertainty in our emulator will remain a negligible source of error for cluster abundance studies through at least the LSST Year 1 data set.Comment: https://aemulusproject.github.io

    Halo histories versus Galaxy properties at z = 0 – I. The quenching of star formation

    Get PDF
    We test whether halo age and galaxy age are correlated at fixed halo and galaxy mass. The formation histories, and thus ages, of dark matter haloes correlate with their large-scale density ρ, an effect known as assembly bias. We test whether this correlation extends to galaxies by measuring the dependence of galaxy stellar age on ρ. To clarify the comparison between theory and observation, and to remove the strong environmental effects on satellites, we use galaxy group catalogues to identify central galaxies and measure their quenched fraction, f_Q, as a function of large-scale environment. Models that match halo age to central galaxy age predict a strong positive correlation between f_Q and ρ. However, we show that the amplitude of this effect depends on the definition of halo age: assembly bias is significantly reduced when removing the effects of splashback haloes – those haloes that are central but have passed through a larger halo or experienced strong tidal encounters. Defining age using halo mass at its peak value rather than current mass removes these effects. In  Sloan Digital Sky Survey data, at M* ≳ 10^(10)M⊙ h^(−2), there is a ∼5 per cent increase in f_Q from low-to-high densities, which is in agreement with predictions of dark matter haloes using peak halo mass. At lower stellar mass there is little to no correlation of f_Q with ρ. For these galaxies, age matching is inconsistent with the data across the range of halo formation metrics that we tested. This implies that halo formation history has a small but statistically significant impact on quenching of star formation at high masses, while the quenching process in low-mass central galaxies is uncorrelated with halo formation history

    Halo histories versus galaxy properties at z = 0 – III. The properties of star-forming galaxies

    Get PDF
    We measure how the properties of star-forming central galaxies correlate with large-scale environment, δ, measured on 10 h^(−1) Mpc scales. We use galaxy group catalogues to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disc scale length R_(exp), and Sersic index of the galaxy light profile, n_S. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star-forming centrals live in underdense regions. For n_S and R_(exp), there is no correlation with δ at M* ≲ 10^(10.5)M⊙, but at higher masses there are positive correlations; a weak correlation with R_(exp) and a strong correlation with n_S. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, M_h. In this model, galaxies are assigned to haloes using the abundance-matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but M_h is used to map onto SFR. The best-fitting model requires some scatter in the M_h –SFR relation. The R_(exp) and n_S measurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass haloes, high-spin haloes live in higher density environments at fixed M_h. Put together with the earlier instalments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly

    Tissue Formation and Vascularization in Anatomically Shaped Human Joint Condyle Ectopically in Vivo

    Full text link
    Scale-up of bioengineered grafts toward clinical applications is a challenge in regenerative medicine. Here, we report tissue formation and vascularization of anatomically shaped human tibial condyles ectopically with a dimension of 20 15 15mm3. A composite of poly-ɛ-caprolactone and hydroxyapatite was fabricated using layer deposition of three-dimensional interlaid strands with interconnecting microchannels (400μm) and seeded with human bone marrow stem cells (hMSCs) with or without osteogenic differentiation. An overlaying layer (1mm deep) of poly(ethylene glycol)-based hydrogel encapsulating hMSCs or hMSC-derived chondrocytes was molded into anatomic shape and anchored into microchannels by gel infusion. After 6 weeks of subcutaneous implantation in athymic rats, hMSCs generated not only significantly more blood vessels, but also significantly larger-diameter vessels than hMSC-derived osteoblasts, although hMSC-derived osteoblasts yielded mineralized tissue in microchannels. Chondrocytes in safranin-O-positive glycosaminoglycan matrix were present in the cartilage layer seeded with hMSC-derived chondrogenic cells, although significantly more cells were present in the cartilage layer seeded with hMSCs than hMSC-derived chondrocytes. Together, MSCs elaborate substantially more angiogenesis, whereas their progenies yield corresponding differentiated tissue phenotypes. Scale up is probable by incorporating a combination of stem cells and their progenies in repeating modules of internal microchannels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78100/1/ten.tea.2008.0653.pd
    corecore