443 research outputs found

    Pendokumentasian Aplikasi Ragam Hias Budaya Bali, sebagai Upaya Konservasi Budaya Bangsa Khususnya pada Perancangan Interior

    Full text link
    Various ornament of Indonesian people comes from the ethnic groups from all over the archipelago. As a tangible cultural ornament has a specific purpose and it does not change throughout the ages. Bali is one of the ethnic group in archipelago that has beautiful decorative art and one of the most popular tourism destination in Indonesia. Bali\u27s ornament generally seen as decorative carving on the column, window or even in door. The beauty of Bali is not only as an inspiration for their colors and sculpture but also the variety of forms that have been simplified in the ornament. Moreover, floral & fauna forms are easy to apply as an interior element in modern buildings. Generally the value of these ornament has a specific purpose related to the cultural and social custom in Bali people. So that the application need to consider more about the purpose of the symbol of the ornament

    Hands-On Learning Environment and Educational Curriculum on Collaborative Robotics

    Get PDF
    The objective of this paper is to describe teaching modules developed at Wayne State University integrate collaborative robots into existing industrial automation curricula. This is in alignment with Oakland Community College and WSU’s desire to create the first industry-relevant learning program for the use of emerging collaborative robotics technology in advanced manufacturing systems. The various learning program components will prepare a career-ready workforce, train industry professionals, and educate academicians on new technologies. Preparing future engineers to work in highly automated production, requires proper education and training in CoBot theory and applications. Engineering and Engineering Technology at Wayne State University offer different robotics and mechatronics courses, but currently there is not any course on CoBot theory and applications. To follow the industry needs, a CoBot learning environment program is developed, which involves theory and hands-on laboratory exercises in order to solve many important automaton problems. This material has been divided into 5-modules: (1) Introduce the concepts of collaborative robotics, (2) Collaborative robot mechanisms and controls, (3) Safety considerations for collaborative robotics, (4) Collaborative robot operations and programming, (5) Collaborative robot kinematics and validation. These modules cover fundamental knowledge of CoBots in advanced manufacturing systems technology. Module content has been developed based on input and materials provided by CoBot manufacturers. After completing all modules students must submit a comprehensive engineering report to document all requirements

    Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Wolbachia </it>(<it>w</it>Bm) is an obligate endosymbiotic bacterium of <it>Brugia malayi</it>, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as <it>B. malayi</it>. As <it>w</it>Bm is required for <it>B. malayi </it>development and fertility, targeting <it>w</it>Bm is a promising approach. However, the lifecycle of neither <it>B. malayi </it>nor <it>w</it>Bm can be maintained <it>in vitro</it>. To facilitate selection of potential drug targets we computationally ranked the <it>w</it>Bm genome based on confidence that a particular gene is essential for the survival of the bacterium.</p> <p>Results</p> <p><it>w</it>Bm protein sequences were aligned using BLAST to the Database of Essential Genes (DEG) version 5.2, a collection of 5,260 experimentally identified essential genes in 15 bacterial strains. A confidence score, the Multiple Hit Score (MHS), was developed to predict each <it>w</it>Bm gene's essentiality based on the top alignments to essential genes in each bacterial strain. This method was validated using a jackknife methodology to test the ability to recover known essential genes in a control genome. A second estimation of essentiality, the Gene Conservation Score (GCS), was calculated on the basis of phyletic conservation of genes across <it>Wolbachia's </it>parent order <it>Rickettsiales</it>. Clusters of orthologous genes were predicted within the 27 currently available complete genomes. Druggability of <it>w</it>Bm proteins was predicted by alignment to a database of protein targets of known compounds.</p> <p>Conclusion</p> <p>Ranking <it>w</it>Bm genes by either MHS or GCS predicts and prioritizes potentially essential genes. Comparison of the MHS to GCS produces quadrants representing four types of predictions: those with high confidence of essentiality by both methods (245 genes), those highly conserved across <it>Rickettsiales </it>(299 genes), those similar to distant essential genes (8 genes), and those with low confidence of essentiality (253 genes). These data facilitate selection of <it>w</it>Bm genes for entry into drug design pipelines.</p

    Absence of Wolbachia endobacteria in the non-filariid nematodes Angiostrongylus cantonensis and A. costaricensis

    Get PDF
    The majority of filarial nematodes harbour Wolbachia endobacteria, including the major pathogenic species in humans, Onchocerca volvulus, Brugia malayi and Wuchereria bancrofti. These obligate endosymbionts have never been demonstrated unequivocally in any non-filariid nematode. However, a recent report described the detection by PCR of Wolbachia in the metastrongylid nematode, Angiostrongylus cantonensis (rat lungworm), a leading cause of eosinophilic meningitis in humans. To address the intriguing possibility of Wolbachia infection in nematode species distinct from the Family Onchocercidae, we used both PCR and immunohistochemistry to screen samples of A. cantonensis and A. costaricensis for the presence of this endosymbiont. We were unable to detect Wolbachia in either species using these methodologies. In addition, bioinformatic and phylogenetic analyses of the Wolbachia gene sequences reported previously from A. cantonensis indicate that they most likely result from contamination with DNA from arthropods and filarial nematodes. This study demonstrates the need for caution in relying solely on PCR for identification of new endosymbiont strains from invertebrate DNA samples

    Nematode-Bacterium Symbioses—Cooperation and Conflict Revealed in the “Omics” Age

    Get PDF
    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for the investigation of host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a variety of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved, their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we discuss the importance and diversity of nematodes, “omics”' studies in nematode-bacterial systems, and the wider implications of the findings

    Evolution of Bacterial Phosphoglycerate Mutases: Non-Homologous Isofunctional Enzymes Undergoing Gene Losses, Gains and Lateral Transfers

    Get PDF
    The glycolytic phosphoglycerate mutases exist as non-homologous isofunctional enzymes (NISE) having independent evolutionary origins and no similarity in primary sequence, 3D structure, or catalytic mechanism. Cofactor-dependent PGM (dPGM) requires 2,3-bisphosphoglycerate for activity; cofactor-independent PGM (iPGM) does not. The PGM profile of any given bacterium is unpredictable and some organisms such as Escherichia coli encode both forms.To examine the distribution of PGM NISE throughout the Bacteria, and gain insight into the evolutionary processes that shape their phyletic profiles, we searched bacterial genome sequences for the presence of dPGM and iPGM. Both forms exhibited patchy distributions throughout the bacterial domain. Species within the same genus, or even strains of the same species, frequently differ in their PGM repertoire. The distribution is further complicated by the common occurrence of dPGM paralogs, while iPGM paralogs are rare. Larger genomes are more likely to accommodate PGM paralogs or both NISE forms. Lateral gene transfers have shaped the PGM profiles with intradomain and interdomain transfers apparent. Archaeal-type iPGM was identified in many bacteria, often as the sole PGM. To address the function of PGM NISE in an organism encoding both forms, we analyzed recombinant enzymes from E. coli. Both NISE were active mutases, but the specific activity of dPGM greatly exceeded that of iPGM, which showed highest activity in the presence of manganese. We created PGM null mutants in E. coli and discovered the ΔdPGM mutant grew slowly due to a delay in exiting stationary phase. Overexpression of dPGM or iPGM overcame this defect.Our biochemical and genetic analyses in E. coli firmly establish dPGM and iPGM as NISE. Metabolic redundancy is indicated since only larger genomes encode both forms. Non-orthologous gene displacement can fully account for the non-uniform PGM distribution we report across the bacterial domain

    Photon Pair Generation in Silicon Micro-Ring Resonator with Reverse Bias Enhancement

    Get PDF
    Photon sources are fundamental components for any quantum photonic technology. The ability to generate high count-rate and low-noise correlated photon pairs via spontaneous parametric down-conversion using bulk crystals has been the cornerstone of modern quantum optics. However, future practical quantum technologies will require a scalable integration approach, and waveguide-based photon sources with high-count rate and low-noise characteristics will be an essential part of chip-based quantum technologies. Here, we demonstrate photon pair generation through spontaneous four-wave mixing in a silicon micro-ring resonator, reporting a maximum coincidence-to-accidental (CAR) ratio of 602 (+-) 37, and a maximum photon pair generation rate of 123 MHz (+-) 11 KHz. To overcome free-carrier related performance degradations we have investigated reverse biased p-i-n structures, demonstrating an improvement in the pair generation rate by a factor of up to 2, with negligible impact on CAR.Comment: 5 pages, 3 figure

    Dynamics of 5-carboxylcytosine during hepatic differentiation: potential general role for active demethylation by DNA repair in lineage specification

    Get PDF
    Patterns of DNA methylation (5-methylcytosine, 5mC) are rearranged during differentiation contributing to the regulation of cell type-specific gene expression. TET proteins oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be recognised and excised from DNA by thymine-DNA glycosylase (TDG) followed by the subsequent incorporation of unmodified cytosine into the abasic site via the base excision repair (BER) pathway. We previously demonstrated that 5caC accumulates during lineage specification of neural stem cells (NSCs) suggesting that such active demethylation pathway is operative in this system, however it is still unknown if TDG/BER-dependent demethylation is utilised during other types of cellular differentiation. Here we analyse dynamics of the global levels of 5hmC and 5caC during differentiation of human pluripotent stem cells (hPSCs) towards hepatic endoderm. We show that, similar to differentiating NSCs, 5caC transiently accumulates during hepatic differentiation. The levels of 5caC increase during specification of foregut, peak at the stage of hepatic endoderm commitment and drop in differentiating cells concurrently with the onset of expression of Alpha Fetoprotein, a marker of committed hepatic progenitors. Moreover, we show that 5caC accumulates at promoter regions of several genes expressed during hepatic specification at differentiation stages corresponding to the commencement of their expression. Our data indicate that transient 5caC accumulation is a common feature of two different types (neural/glial and endoderm/hepatic) of cellular differentiation. This suggests that oxidation of 5mC may represent a general mechanism of rearrangement of 5mC profiles during lineage specification of somatic cells in mammals

    Author correction: large enriched fragment targeted sequencing (LEFT-SEQ) applied to capture of Wolbachia genomes

    Get PDF
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.Published versio
    corecore