33 research outputs found

    Predicting the Clinical Management of Skin Lesions Using Deep Learning

    Get PDF
    Automated machine learning approaches to skin lesion diagnosis from images are approaching dermatologist-level performance. However, current machine learning approaches that suggest management decisions rely on predicting the underlying skin condition to infer a management decision without considering the variability of management decisions that may exist within a single condition. We present the first work to explore image-based prediction of clinical management decisions directly without explicitly predicting the diagnosis. In particular, we use clinical and dermoscopic images of skin lesions along with patient metadata from the Interactive Atlas of Dermoscopy dataset (1011 cases; 20 disease labels; 3 management decisions) and demonstrate that predicting management labels directly is more accurate than predicting the diagnosis and then inferring the management decision (13.73±3.93% and 6.59±2.86% improvement in overall accuracy and AUROC respectively), statistically significant at p<0.001. Directly predicting management decisions also considerably reduces the over-excision rate as compared to management decisions inferred from diagnosis predictions (24.56% fewer cases wrongly predicted to be excised). Furthermore, we show that training a model to also simultaneously predict the seven-point criteria and the diagnosis of skin lesions yields an even higher accuracy (improvements of 4.68±1.89% and 2.24±2.04% in overall accuracy and AUROC respectively) of management predictions. Finally, we demonstrate our model’s generalizability by evaluating on the publicly available MClass-D dataset and show that our model agrees with the clinical management recommendations of 157 dermatologists as much as they agree amongst each other

    Reliability of the Spinal Instability Neoplastic Score (SINS) among radiation oncologists: an assessment of instability secondary to spinal metastases

    Get PDF
    BACKGROUND: The Spinal Instability Neoplastic Score (SINS) categorizes tumor related spinal instability. It has the potential to streamline the referral of patients with established or potential spinal instability to a spine surgeon. This study aims to define the inter- and intra-observer reliability and validity of SINS among radiation oncologists. METHODS: Thirty-three radiation oncologists, across ten international sites, rated 30 neoplastic spinal disease cases. For each case, the total SINS (0-18 points), three clinical categories (stable: 0-6 points, potentially unstable: 7-12 points, and unstable: 13-18 points), and a binary scale (‘stable’: 0-6 points and ‘current or possible instability’; surgical consultation recommended: 7-18 points) were recorded. Evaluation was repeated 6-8 weeks later. Inter-observer agreement and intra-observer reproducibility were calculated by means of the kappa statistic and translated into levels of agreement (slight, fair, moderate, substantial, and excellent). Validity was determined by comparing the ratings against a spinal surgeon’s consensus standard. RESULTS: Radiation oncologists demonstrated substantial (κ = 0.76) inter-observer and excellent (κ = 0.80) intra-observer reliability when using the SINS binary scale (‘stable’ versus ‘current or possible instability’). Validity of the binary scale was also excellent (κ = 0.85) compared with the gold standard. None of the unstable cases was rated as stable by the radiation oncologists ensuring all were appropriately recommended for surgical consultation. CONCLUSIONS: Among radiation oncologists SINS is a highly reliable, reproducible, and valid assessment tool to address a key question in tumor related spinal disease: Is the spine ‘stable’ or is there ‘current or possible instability’ that warrants surgical assessment

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    Myeloid Sirtuin 2 expression does not impact long-term Mycobacterium tuberculosis control

    Get PDF
    Sirtuins (Sirts) regulate several cellular mechanisms through deacetylation of several transcription factors and enzymes. Recently, Sirt2 was shown to prevent the development of inflammatory processes and its expression favors acute Listeria monocytogenes infection. The impact of this molecule in the context of chronic infections remains unknown. We found that specific Sirt2 deletion in the myeloid lineage transiently increased Mycobacterium tuberculosis load in the lungs and liver of conditional mice. Sirt2 did not affect long-term infection since no significant differences were observed in the bacterial burden at days 60 and 120 post-infection. The initial increase in M. tuberculosis growth was not due to differences in inflammatory cell infiltrates in the lung, myeloid or CD4+ T cells. The transcription levels of IFN-?, IL-17, TNF, IL-6 and NOS2 were also not affected in the lungs by Sirt2-myeloid specific deletion. Overall, our results demonstrate that Sirt2 expression has a transitory effect in M. tuberculosis infection. Thus, modulation of Sirt2 activity in vivo is not expected to affect chronic infection with M. tuberculosis.Fundação para a Ciência e Tecnologia, Portugal and cofunded by Programa Operacional Regional do Norte (ON.2–O Novo Norte), Quadro de Referência Estratégico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER). Project grants: PTDC/SAU-MII/101977/2008 (to AGC) and PTDC/BIA-BCM/102776/2008 (to MS). LMT was supported by FCT Grant SFRH/BPD/77399/20

    The genomic basis of adaptive evolution in threespine sticklebacks

    Get PDF
    Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine–freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine–freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.National Human Genome Research Institute (U.S.)National Human Genome Research Institute (U.S.) (NHGRI CEGS Grant P50-HG002568

    Numerical modelling of a two-phase twin-screw expander for Trilateral Flash Cycle applications

    Get PDF
    This paper presents numerical investigations of a twin-screw expander for low grade (≤100°C) heat to power conversion applications based on the bottoming Trilateral Flash Cycle. After a thorough description of the modeling procedure, a first set of simulations shows the effect of different inlet qualities of the R245fa working fluid and of the revolution speed on the expander performance. In particular, at 3750 RPM and an inlet absolute pressure of 5 bar, the volumetric and adiabatic efficiencies will increase from 24.8% and 37.6% to 61.2% and 83.1% if the inlet quality in the intake duct of the expander increased from 0 to 0.1. To further assess the effects of inlet quality, inlet pressure and revolution speed on the expander performance, parametric analyses were carried out in the ranges 0-1 inlet quality, 5-10 bar pressure and 1500-6000RPM speed respectively. © 2018 The Author(s).European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 680599, (ii) Innovate UK (project no. 61995-431253, (iii) Engineering and Physical Sciences Research Council UK (EPSRC), grant no. EP/P510294/1 and (iv) Research Councils UK (RCUK), grant no. EP/K011820/1

    Synthesis and properties of graphene and graphene/carbon nanotube-reinforced soft magnetic FeCo alloy composites by spark plasma sintering

    Get PDF
    The effect of the addition of graphene nanoplatelets (GNP) and graphene nanoplatelet/carbon nanotube (GNT) mixtures on the mechanical and magnetic properties of spark plasma sintered soft magnetic FeCo alloys was studied. Three different volume fractions (0.5, 1 and 2 vol%) of GNPs and GNTs were investigated. Ball milling was used to disperse the GNPs in monolithic FeCo powder, while magnetic stirring and ultrasonic agitation were used to prepare hybrid GNT prior to ball milling. The highest saturation induction (B sat) of 2.39 T was observed in the 1 vol% GNP composite. An increase in the volume fraction of the ordered nanocrystalline structure was found to reduce the coercivity (H c) of the composites. The addition of CNTs to the GNP composite prevented grain growth, leading to grain refinement. An 18 % increase in hardness was observed in the 1 vol% GNP composite as compared to the as-received FeCo alloy. A reduction in tensile strength was observed in all of the composite materials, except for the 0.5 vol% GNT composite, for which a value of 643 MPa was observed. Raman spectroscopy indicated a reduction in the defect density of the GNPs after adding CNTs

    First Direct Observation of Collider Neutrinos with FASER at the LHC

    Get PDF
    We report the first direct observation of neutrino interactions at a particle collider experiment. Neutrino candidate events are identified in a 13.6 TeV center-of-mass energy pppp collision data set of 35.4 fb−1{}^{-1} using the active electronic components of the FASER detector at the Large Hadron Collider. The candidates are required to have a track propagating through the entire length of the FASER detector and be consistent with a muon neutrino charged-current interaction. We infer 153−13+12153^{+12}_{-13} neutrino interactions with a significance of 16 standard deviations above the background-only hypothesis. These events are consistent with the characteristics expected from neutrino interactions in terms of secondary particle production and spatial distribution, and they imply the observation of both neutrinos and anti-neutrinos with an incident neutrino energy of significantly above 200 GeV.Comment: Submitted to PRL on March 24 202

    Synaptic AMPA receptor composition in development, plasticity and disease

    Get PDF
    corecore