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Abstract. Anatomical shape variations are typically difficult to model
and parametric or hand-crafted models can lead to ill-fitting segmen-
tations. This difficulty can be addressed with a framework like auto-
context, that learns to jointly detect and regularize a segmentation. How-
ever, mis-segmentation can still occur when a desired structure, such as
the spinal cord, has few locally distinct features. High-level knowledge
at a global scale (e.g. an MRI contains a single connected spinal cord)
is needed to regularize these candidate segmentations. To encode high-
level knowledge, we propose to augment the auto-context framework with
global geometric features extracted from the detected candidate shapes.
Our classifier then learns these high-level rules and rejects falsely de-
tected shapes. To validate our method we segment the spinal cords from
20 MRI volumes composed of patients with and without multiple sclero-
sis and demonstrate improvements in accuracy, speed, and manual effort
required when compared to state-of-the-art methods.

1 Introduction

Studies of multiple sclerosis (MS) show that spinal cord atrophy strongly con-
tributes to the physical disability of a patient, motivating the need for quan-
tifiable spinal cord measurements to evaluate the progression of pathology and
the effectiveness of therapies [8]. Spinal cord segmentation is an important first
step to extracting these measurements. However, segmenting the cord is chal-
lenging as it has an irregular cross-sectional shape whose signal and diameter
change over the length of the cord. The image can be polluted by noise, suffer
from motion artefacts, and its boundaries can be poorly defined where the cord
contacts the spinal canal wall. When scanned at the most common resolution of
1 mm3, the cord also contains a high number of partial volume voxels relative
to the total size of the cord, which need to be accounted for in order to accu-
rately measure the cord’s true shape and volume [10]. Manual segmentation is
a challenging and time consuming process that suffers from operator variabil-
ity, making automated methods desirable. To address these challenges, several
approaches have been proposed for automating spinal cord segmentation.
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McIntosh et al. [6] segmented the cord using locally optimal 3D deformable
organisms guided by a Hessian-based filter designed to adapt to the spinal cord’s
varying elliptical and tubular structure. They later extended this approach to
use the cord’s medial axis (found by a user-guided live-wire method) to guide the
spinal crawler’s cross-sectional shape fitting [7]. Horsfield et al. [3] fit an active
surface model to the spinal cord and had the user specify the cord center-line by
placing points on representative slices. Chen et al. [1] used a deformable atlas-
based registration combined with a topology preserving classification to fully
automate a crisp segmentation of the cord. In previous work [4], we represented
the spinal cord’s axial shape variations using probabilistic principal component
analysis (PCA) and found the globally optimal path in 6D (three spatial and
three principal components weights) between two user specified seed points.

Auto-context, proposed by Tu and Bai [11], is a general iterative learning
framework used for segmentation that jointly learns the appearance and reg-
ularization distributions where the predicted class labels (the context) of the
previous iteration are used as input to the current iteration. Auto-context was
shown to improve segmentation results [11]; however, if the surrounding local
context is incorrect it may re-enforce an incorrect segmentation. This was ad-
dressed in the recent work by Kontschieder et al. [5] who used a geodesic dis-
tance transform in an auto-context based segmentation approach to incorporate
long range spatial context. Similarly, we extend auto-context to learn high-level
problem specific information (global context), but rather than considering the
geodesic distance, our probability mask represents distinct candidate shapes and
encodes their relations to each other to encourage a single connected spinal cord.

Specifically, we propose to extract geometric features (e.g. volume) from the
candidate shapes created in each iteration of auto-context. We define a shape
as a distinct region of connected components composed of the same class la-
bel. Features from the candidate shapes are extracted and compared with each
other to give global information about the other candidate shapes and are in-
cluded in the auto-context framework. Thus the class label for a specific voxel is
conditioned not only on its appearance and surrounding labels, but also on the
geometric features of the shape it belongs to relative to other candidate shapes.
We demonstrate that augmenting auto-context with global geometric context
improves the original auto-context algorithm, and results in superior spinal cord
segmentations when compared to a more traditional approach using hand-crafted
gradient and intensity-based terms regularized by a PCA shape prior.

2 Methods

This section introduces auto-context, describes our global geometric features,
explains our auto-context set-up, and outlines the training and testing processes.

Image Segmentation and Auto-context. We can think of image segmen-
tation as a voxel labelling problem, where given an image X = (x1, . . . , xn)
composed of n voxels, we want to find a set of labels such that each voxel i is
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assigned a corresponding label, Y = (y1, . . . , yn). The label yi can take on one
of k possible values. Our objective is to find the optimal configuration Y ∗ out of
the possible segmentations Y such that it maximizes the probability given the
observed image, Y ∗ = argmaxY p(Y |X).

One approach to find Y ∗ is to apply Bayes’ rule with a fixed p(X) to give
p(Y |X) ∝ p(X|Y )p(Y ), where p(X|Y ) represents the likelihood of the image
given a segmentation, and p(Y ) is the probability of that segmentation occur-
ring. Hand-crafted data-terms and/or parametric models with restrictions on
complexity and built-in assumptions (e.g. Gaussian) are often used [4, 6, 7].

Another approach is to directly model p(Y |X). If we assume that the labels
yi, i = 1, . . . , n are independent and are conditioned only on a small patch of
image voxels centred around the ith voxel, denoted asN(i), then this can be mod-
elled by p(yi|XN(i)), where Xi returns the intensities at voxel i. A discriminative
model (e.g. decision forest [2]) can be used to learn this distribution; however, it
does not consider the class labels of surrounding voxels. One way to model the
interdependence of neighbouring labels is with conditional random fields where
the class label yi is dependent on a neighbouring class label yj [9]. While this
more closely approximates the true p(Y |X), it still makes the assumption that
each class label yi is only dependent on a very small neighbourhood.

The auto-context model seeks to condition over a larger area of surrounding
class labels to provide more “context” [11]. This is accomplished by introducing
an iterative time-step t and training a series of classifiers using the discriminative
probability (the classification confidence) map of the previous classificationM t−1

where M t = (mt
1, . . . ,m

t
n). Each vector mt

i represents the probabilities of voxel
i belonging to one of the k possible class labels, mi = [p(yi = 1), . . . , p(yi = k)].
The initial class probability map M0 is set to have uniform values. At time t, a
classifier is trained to predict the true class label yi given the image patch XN(i)

and the context information M t−1(i), where M is centred at voxel i. Once the
classifier is trained, the new probability map M t is used in the next iteration
(t+ 1) and the algorithm repeats until M converges. The final output is a series
of learned probability distributions,

mt
i = pt(yi|XN(i),M

t−1(i)). (1)

In testing, a novel image has the same features extracted and goes through the
iterative classification process using the learned probability distributions pt.

This formulation does not capture high-level information about the entire
shape that the pixel belongs to nor does it consider the interaction among other
candidate shapes. If we simply increase the size of N(i), we increase the dimen-
sionality of the feature space which can decrease the efficiency of our classifier.
Thus this formulation is not well suited to capture high-level knowledge such as
that the spinal cord is a single connected structure of a particular size.

Global Geometric Features. We propose to augment auto-context with
global geometric features. At iteration t, instead of only using the previous prob-
ability map M t−1, we also extract features from the candidate shapes found
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within M t−1 and compare these features to each other to capture global infor-
mation. More formally, we define a function C(M, i) that takes the maximum a
posteriori (MAP) class label of M to form a candidate shape Sq based on the
regions of connected component with the same class label, Sq = C(M, i). This
divides M into Q distinct non-overlapping connected regions with the same class
label, where each distinct region represents a candidate shape Sq (Fig. 1c,g). The
shape Sq is composed of indices into the probability map M and the index for
voxel i belongs to a single shape, i ∈ Sq.

We define and utilize a single global geometric feature that encourages our
method to detect only a single connected spinal cord. For voxel i we extract a
feature f(Sq,M) from the shape that i belongs to and compute the ratio between
the current and the largest shape feature from the Q candidate shapes,

φ(M, i) =
f(C(M, i),M)

max (f(S1,M), . . . , f(SQ,M))
. (2)

The feature we extract, f(Sq,M), gives us an indication of the size and label
confidence of the component being considered,

f(Sq,M) =
∑
j∈Sq

M(j) (3)

where the iterator j sums the probabilities belonging to shape Sq. If φ(M, i) re-
turns a value of 1, then this indicates that voxel i belongs to the largest probable
shape out of all the candidate shapes. We augment the previous auto-context
model (1) with our global geometric feature φ,

mt
i = pt(yi|XN(i),M

t−1
N(i), φ(M t−1, i)). (4)

This model considers intensity information, local context, and the proposed global
features about the candidate shapes and the relations between them.

Auto-context Setup and Feature Design The original auto-context work
used probabilistic boosting trees as the discriminative classifier, but other clas-
sifiers can be used [11]. We chose to use decision forests for our discriminative
model due to their ability to generalize well to unseen data, handle both classifi-
cation and regression, learn a distribution, and provide a probabilistic output [2].
This probabilistic score mi is particularly important because it gives us an in-
dication of the probability of being a member of the class by computing the
percentage of observations of this class in a tree leaf averaged over all trees.

The neighbourhood of the ith voxel, N(i), is computed using a simple radial
pattern where we sample those voxels that are the immediate neighbours (8 in
2D, 26 in 3D) of voxel i and those that are three voxels along the ray away
from voxel i (Fig. 1e). This densely samples points close to our ith voxel and
sparsely samples voxels further away which helps keep the size of the feature
vector relatively small to allow for faster run-times. We use a 52-neighbour 3D
version of the neighbourhood shown in Fig. 1e. To compute image appearance
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Fig. 1. An outline of our method: (a) The MRI data X. (b) The probability map M t.
(c) The MAP estimate of M produces distinct shapes (dotted outline) whose features
φ(M, i) can be extracted. (d) Decision forest trained on a,b,c. (e) The neighbourhood
N(i) in 2D. (f) The probability map M t+1 produced by d. (g) Shapes computed from
f. (h) Decision forest trained on a,f,g.

features we directly sample the neighbourhood intensities. In order to have an
invariance to a shift in intensities and to capture the polarity (e.g. dark-to-bright
transitions), we divide the intensity of neighbourhood voxels by the intensity of
the voxel of interest, XN(i) = {x1

xi
, . . . , x52

xi
}.

Training and Testing Since the two patient groups should not be modelled
as samples from a single distribution, we separate the multiple sclerosis (MS)
from the non-MS patients to train two different classifiers specifically on the
variability found in the two groups. We employ leave-one-out testing.

Our auto-context model is trained based on (4). Our training segmentations
have a value of 1 inside the cord, 0 outside the cord, and a partial volume estimate
for the cord’s boundary. Each decision forest pt is trained on a subset of this
training data (2000 voxels from each volume) split between cord and background
samples with the fuzzy border voxels omitted and samples of false positives
explicitly included if they exist. To reduce over-fitting, for each training volume
V , a separate decision forest that does not include the data from V is trained
and used to predict the class membership of V . We repeat this process 5 times
as we found that the results generally stabilized without further training (less
than 0.01 difference in the mean Jaccard similarity index between consecutive
iterations). The training produces a set of 5 trained decision forests, {p1, . . . , p5}.

As our ground truth segmentations have a fuzzy border based on partial
volume estimation not modelled by the decision forests, we train a separate
regression forest pr to capture a two-pixel thick partial volume border using the
same intensity and probability features. It can take up to 6 hrs to fully train our
auto-context model on a machine using 4 cores.

In the testing phase, a novel volume is classified by all the trained decision
forests, {p1, . . . , p5}, in series. We take the maximum a posterior estimate of our
final classified volume M5 and use the regression forest trained on border partial
volumes pr to produce our final segmentation (Fig. 2i,j).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Segmentation without global features row 1, and with global features row 2.
(a) An axial slice of the cropped spinal cord. (f) The ground truth. (b,g) First iteration
over-detects the cord. (c,h) Second iteration begins to regularize the segmentation. (d)
Final fuzzy border segmentation with a false positive. (i) False positive removed by the
global features. (e) Sagittal plane where weak appearance information splits the cord.
(j) Corrected with global features.

3 Results

We validate our method using 20 MRI scans composed of 10 MS patients from a
1.5T scanner and 10 healthy patients from a 3.0T scanner (scans from different
studies) with a voxel size of 0.976 × 0.976 × 1.000 mm. Each scan was segmented
by an expert who used an in-house method similar to that by Tench et al. [10].
We segment over vertebra C3 - C7 spanning a total of 80 slices.

To capture the partial volume effects (PVE) [10], we use a probabilistic ver-

sion of the Jaccard index defined in [4] as, JPVE(A,G) =
∑

x

∑
y min(A(x,y),G(x,y))∑

x

∑
y max(A(x,y),G(x,y))

where A and G are the automated and ground truth segmentations. To high-
light our methods improved ability to remove false positives, we compute the
Hausdorff distance which measures the furthest distance between the closest
points in the two segmentations, H = maxa∈A (ming∈GD(a, g)), where D(a, g)
computes the 3D Euclidean distance between points a, g. To measure the simi-
larity between the automated and manual segmentation volumes, we calculate,
V olS = 1 − min(|(|A|1/|G|1) − 1|, 1) which returns a 0% accuracy if the au-
tomated volume overestimates the expert volume by more than 200% [7]. To
indicate if our automated method is a useful consistent substitute to the manual
method for computing spinal cord volume, we compute the Pearson’s correlation
coefficient between the volumes of the automated and manual segmentations.

We perform three experiments to validate our method. Our first experi-
ment, compares our auto-context augmented with the global features method
against a segmentation method we previously developed [4]. This previous work
modelled the cord using hand-crafted gradient and intensity-based terms and
a probabilistic PCA shape prior. Our new results compare favourably, with a
mean JPVE of 0.878 (previous 0.784) for MS and 0.928 (previous 0.832) for non-
MS scans, validated over the same dataset. Method [4] had been favourably
compared with [6, 7] on the same dataset.

Our second experiment is done to better understand our improvements
and to highlight the problems with restricted parametric models and hand-
crafted terms. To examine the effect that the restricted parametric PCA model
has on the segmentation, we pass only the ground truth data (i.e. the cord is per-
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fectly detected) to be regularized by the PCA model and A* optimizer of [4]. We
find that even with the ground truth data, the restricted PCA model produces
less accurate JPVE results when compared to our auto-context model (Table 1
- row GTPCA). To show the limitations of hand-crafted terms, we replace the
gradient and intensity-based terms of [4] with the spinal cord probability map
M1 (trained only on intensity features) as input to be regularized by the PCA
model. This improves the segmentation results (Table 1 - row PCAM) over what
was originally reported in [4] indicating that the trained classifier is better at
detecting the cord.

Our third experiment compares auto-context with and without global fea-
tures. To compare to the approach of Tu and Bai [11], we initially omit the
global feature and rely only on the image X and probability maps M as input
to the auto-context model to segment the spinal cord (Table 1 - row XM ). We
then reintroduce the global feature φ(M, i) and show improved segmentation
results (Table 1 - row XMφ). This demonstrates that it is useful to augment
auto-context with the global shape feature (i.e. improvement over [11]).

Table 1. GTPCA uses the ground truth as input to [4] to demonstrate the best the
restricted PCA model can achieve. PCAM uses the spinal cord probability map M1

as input to the PCA-based method of [4]. XM is auto-context with the image and
probability map features. XMφ is auto-context with the image, probability and global
geometric feature. We compute the mean values of the probabilistic Jaccard index
(JPVE), Hausdorff distance (H) and area similarity (V olS) in voxels between our auto-
mated and ground segmentations over ten MS patients (left columns) and ten healthy
(non-MS) patients (right columns). The Pearson’s correlation coefficients (r) and p-
values (p) between the automated and the ground truth segmentations are measured.

Case JPVE H V olS r p JPVE H V olS r p

GTPCA 0.853 1.96 98.36 0.997 3×10−10 0.881 1.57 98.97 0.993 9×10−9

PCAM 0.818 2.42 96.38 0.931 9 × 10−5 0.847 2.04 93.65 0.896 4 × 10−4

XM 0.856 15.35 94.50 0.932 9 × 10−5 0.916 4.41 97.74 0.939 6 × 10−5

XMφ 0.878 2.29 96.32 0.972 3×10−6 0.928 1.82 98.87 0.991 3×10−8

We note that, once trained, our unoptimized implementation takes under 10
minutes to run for a novel cropped volume while [4] reported run-times between
1 and 5 hours for the same sized volumes. Also, while our method was tested on
a cropped volume (Fig. 1a), it did not require any further user-input in contrast
to [7, 3], and it was capable of capturing the PVE not modelled in [1].

4 Conclusion

We have proposed to augment auto-context with global geometric features that
can capture high-level information and relationships between the candidate shapes
found within a segmentation. The auto-context approach jointly detects and
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regularizes a segmentation which allows for a flexible shape space capable of
capturing subtle irregularities in the spinal cord. We have demonstrated im-
provements to accuracy and a lower running time when compared to a recently
proposed method. Future work would validate our method over a larger spinal
cord dataset with more diverse clinical parameters and investigate the develop-
ment of other global geometric features.

Acknowledgements. JK, RT, and GH were partially supported by NSERC
and Biogen Idec Canada. CM was supported by the Canadian Breast Cancer
Foundation and the Canadian Cancer Society Research Institute.

References

1. Chen, M., Carass, A., Cuzzocreo, J., Bazin, P.L., Reich, D.S., Prince, J.L.: Topol-
ogy preserving automatic segmentation of the spinal cord in magnetic resonance
images. In: IEEE ISBI. pp. 1737–1740 (2011)

2. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for
classification, regression, density estimation, manifold learning and semi-supervised
learning. Foundations and Trends R© in Computer Graphics and Vision 7(2-3), 81–
227 (2011)

3. Horsfield, M.A., Sala, S., Neema, M., Absinta, M., Bakshi, A., Sormani, M.P.,
Rocca, M.A., Bakshi, R., Filippi, M.: Rapid semi-automatic segmentation of the
spinal cord from magnetic resonance images: Application in multiple sclerosis. Neu-
roimage 50(2), 446–455 (2010)

4. Kawahara, J., McIntosh, C., Tam, R., Hamarneh, G.: Globally optimal spinal cord
segmentation using a minimal path in high dimensions. In: IEEE ISBI. pp. 836–839
(2013)

5. Kontschieder, P., Kohli, P., Shotton, J., Criminisi, A.: GeoF: Geodesic forests for
learning coupled predictors. In: IEEE CVPR (2013)

6. McIntosh, C., Hamarneh, G.: Spinal crawlers: Deformable organisms for spinal
cord segmentation and analysis. In: Larsen, R., Nielsen, M., Sporring, J. (eds.)
MICCAI 2006, LNCS, vol. 4190, pp. 808–815. Springer, Heidelberg (2006)

7. McIntosh, C., Hamarneh, G., Toom, M., Tam, R.: Spinal cord segmentation for
volume estimation in healthy and multiple sclerosis subjects using crawlers and
minimal paths. In: IEEE HISB. pp. 25–31 (2011)

8. Rocca, M., Horsfield, M., Sala, S., Copetti, M., Valsasina, P., Mesaros, S., Mar-
tinelli, V., Caputo, D., Stosic-Opincal, T., Drulovic, J., Comi, G., Filippi, M.: A
multicenter assessment of cervical cord atrophy among MS clinical phenotypes.
Neurology 76(24), 2096–2102 (2011)

9. Szummer, M., Kohli, P., Hoiem, D.: Learning CRFs using graph cuts. In:
D. Forsyth, P.T., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303,
pp. 582–595. Springer, Heidelberg (2008)

10. Tench, C.R., Morgan, P.S., Constantinescu, C.S.: Measurement of cervical spinal
cord cross-sectional area by MRI using edge detection and partial volume correc-
tion. J. Magn. Reson. Imaging 21(3), 197–203 (2005)

11. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D
brain image segmentation. IEEE TPAMI 32(10), 1744–1757 (2010)


