71 research outputs found

    Weather, Not Climate, Defines Distributions of Vagile Bird Species

    Get PDF
    Background\ud \ud Accurate predictions of species distributions are essential for climate change impact assessments. However the standard practice of using long-term climate averages to train species distribution models might mute important temporal patterns of species distribution. The benefit of using temporally explicit weather and distribution data has not been assessed. 1We hypothesized that short-term weather associated with the time a species was recorded should be superior to long-term climate measures for predicting distributions of mobile species.\ud \ud Methodology\ud \ud We tested our hypothesis by generating distribution models for 157 bird species found in Australian tropical savannas (ATS) using modelling algorithm Maxent. The variable weather of the ATS supports a bird assemblage with variable movement patterns and a high incidence of nomadism. We developed “weather” models by relating climatic variables (mean temperature, rainfall, rainfall seasonality and temperature seasonality) from the three month, six month and one year period preceding each bird record over a 58 year period (1950–2008). These weather models were compared against models built using long-term (30 year) averages of the same climatic variables.\ud \ud Conclusions\ud \ud Weather models consistently achieved higher model scores than climate models, particularly for wide-ranging, nomadic and desert species. Climate models predicted larger range areas for species, whereas weather models quantified fluctuations in habitat suitability across months, seasons and years. Models based on long-term climate averages over-estimate availability of suitable habitat and species' climatic tolerances, masking species potential vulnerability to climate change. Our results demonstrate that dynamic approaches to distribution modelling, such as incorporating organism-appropriate temporal scales, improves understanding of species distributions

    Regional seasonality of fire size and fire weather conditions across Australia's northern savanna

    Get PDF
    Australia's northern savannas have among the highest fire frequencies in the world. The climate is monsoonal, with a long, dry season of up to 9 months, during which most fires occur. The Australian Government's Emissions Reduction Fund allows land managers to generate carbon credits by abating the direct emissions of CO2 equivalent gases via prescribed burning that shifts the fire regime from predominantly large, high-intensity late dry season fires to a more benign, early dry season fire regime. However, the Australian savannas are vast and there is significant variation in weather conditions and seasonality, which is likely to result in spatial and temporal variations in the commencement and length of late dry season conditions. Here, we assess the temporal and spatial consistency of the commencement of late dry season conditions, defined as those months that maximise fire size and where the most extreme fire weather conditions exist. The results demonstrate that significant yearly, seasonal and spatial variations in fire size and fire weather conditions exist, both within and between bioregions. The effective start of late dry season conditions, as defined by those months that maximise fire size and where the most extreme fire weather variables exist, is variable across the savannas

    Arboreality increases reptile community resistance to disturbance from livestock grazing

    No full text
    Domestic livestock grazing directly alters ground-level habitat but its effects on arboreal habitat are poorly known. Similarly, the response to grazing of grounddwelling fauna has been examined, but there are few studies of arboreal fauna. Globally, grazing has been implicated in the decline of vertebrate fauna species, but some species appear resistant to the effects of grazing, either benefiting from the structural changes at ground level or avoiding them, as may be the case with arboreal species. Here, we examine arboreal and terrestrial habitat responses and reptile community responses to grazing, to determine whether arboreal reptile species are more resistant than terrestrial reptile species. We conducted arboreal and terrestrial reptile surveys on four different grazing treatments, at a 19-year experimental grazing trial in northern Australia. To compare the grazing response of arboreal and terrestrial reptile assemblages, we used community, functional group and individual species-level analyses. Species responses were modelled in relation to landscape-scale and microhabitat variables. Arboreal reptile species were resistant to the impact of grazing, whereas terrestrial reptiles were negatively affected by heavy grazing. Terrestrial reptiles were positively associated with complex ground structures, which were greatly reduced in heavily grazed areas. Arboreal lizards responded positively to microhabitat features such as tree hollows. Synthesis and applications. Arboreal and terrestrial reptiles have different responses to the impact of livestock grazing. This has implications for rangeland management, particularly if management objectives include goals relating to conserving certain species or functional groups. Arboreal reptiles showed resistance in a landscape that is grazed, but where trees have not been cleared. We highlight the importance of retaining trees in rangelands for both terrestrial and arboreal microhabitats

    Data from: Persistence in peripheral refugia promotes phenotypic divergence and speciation in a rainforest frog

    Get PDF
    It is well established from the fossil record and phylogeographic analyses that late Quaternary climate fluctuations led to substantial changes in species' distribution, but whether and how these fluctuations resulted in phenotypic divergence and speciation is less clear. This question can be addressed through detailed analysis of traits relevant to ecology and mating within and among intraspecific lineages that persisted in separate refugia. In a biogeographic system (the Australian Wet Tropics, AWT) with a well-established history of refugial isolation during Pleistocene glacial periods, we test whether climate-mediated changes in distribution drove genetic and phenotypic divergence in the rainforest frog, Cophixalus ornatus. We combine paleomodeling and multilocus genetics to demonstrate long-term persistence within, and isolation among, one central and two peripheral refugia. In contrast to other AWT vertebrates, the three major lineages differ in ecologically relevant morphology and in mating call, reflecting divergent selection and/or genetic drift in the peripheral isolates. Divergence in mating call, and contact zone analyses, suggest that the lineages now represent distinct species. The results show that climate shifts can promote genetic and phenotypic divergence, and potentially speciation, and direct attention towards incorporating adaptive traits into phylogeographic studies to better resolve the mechanisms of speciation

    Persistence in peripheral refugia promotes phenotypic divergence and speciation in a rainforest frog

    No full text
    It is well established from the fossil record and phylogeographic analyses that late Quaternary climate fluctuations led to substantial changes in species' distribution, but whether and how these fluctuations resulted in phenotypic divergence and speciation is less clear. This question can be addressed through detailed analysis of traits relevant to ecology and mating within and among intraspecific lineages that persisted in separate refugia. In a biogeographic system (the Australian Wet Tropics [AWT]) with a well-established history of refugial isolation during Pleistocene glacial periods, we tested whether climate-mediated changes in distribution drove genetic and phenotypic divergence in the rainforest frog Cophixalus ornatus. We combined paleomodeling and multilocus genetics to demonstrate long-term persistence within, and isolation among, one central and two peripheral refugia. In contrast to other AWT vertebrates, the three major lineages differ in ecologically relevant morphology and in mating call, reflecting divergent selection and/or genetic drift in the peripheral isolates. Divergence in mating call and contact zone analyses suggest that the lineages now represent distinct species. The results show that climate shifts can promote genetic and phenotypic divergence and, potentially, speciation and direct attention toward incorporating adaptive traits into phylogeographic studies to better resolve the mechanisms of speciation

    Data from: Persistence in peripheral refugia promotes phenotypic divergence and speciation in a rainforest frog

    No full text
    It is well established from the fossil record and phylogeographic analyses that late Quaternary climate fluctuations led to substantial changes in species' distribution, but whether and how these fluctuations resulted in phenotypic divergence and speciation is less clear. This question can be addressed through detailed analysis of traits relevant to ecology and mating within and among intraspecific lineages that persisted in separate refugia. In a biogeographic system (the Australian Wet Tropics, AWT) with a well-established history of refugial isolation during Pleistocene glacial periods, we test whether climate-mediated changes in distribution drove genetic and phenotypic divergence in the rainforest frog, Cophixalus ornatus. We combine paleomodeling and multilocus genetics to demonstrate long-term persistence within, and isolation among, one central and two peripheral refugia. In contrast to other AWT vertebrates, the three major lineages differ in ecologically relevant morphology and in mating call, reflecting divergent selection and/or genetic drift in the peripheral isolates. Divergence in mating call, and contact zone analyses, suggest that the lineages now represent distinct species. The results show that climate shifts can promote genetic and phenotypic divergence, and potentially speciation, and direct attention towards incorporating adaptive traits into phylogeographic studies to better resolve the mechanisms of speciation

    Data from: Persistence in peripheral refugia promotes phenotypic divergence and speciation in a rainforest frog

    No full text
    It is well established from the fossil record and phylogeographic analyses that late Quaternary climate fluctuations led to substantial changes in species' distribution, but whether and how these fluctuations resulted in phenotypic divergence and speciation is less clear. This question can be addressed through detailed analysis of traits relevant to ecology and mating within and among intraspecific lineages that persisted in separate refugia. In a biogeographic system (the Australian Wet Tropics, AWT) with a well-established history of refugial isolation during Pleistocene glacial periods, we test whether climate-mediated changes in distribution drove genetic and phenotypic divergence in the rainforest frog, Cophixalus ornatus. We combine paleomodeling and multilocus genetics to demonstrate long-term persistence within, and isolation among, one central and two peripheral refugia. In contrast to other AWT vertebrates, the three major lineages differ in ecologically relevant morphology and in mating call, reflecting divergent selection and/or genetic drift in the peripheral isolates. Divergence in mating call, and contact zone analyses, suggest that the lineages now represent distinct species. The results show that climate shifts can promote genetic and phenotypic divergence, and potentially speciation, and direct attention towards incorporating adaptive traits into phylogeographic studies to better resolve the mechanisms of speciation
    • …
    corecore