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Abstract. Australia’s northern savannas have among the highest fire frequencies in theworld. The climate ismonsoonal,
with a long, dry season of up to 9 months, during which most fires occur. The Australian Government’s Emissions

Reduction Fund allows land managers to generate carbon credits by abating the direct emissions of CO2 equivalent gases
via prescribed burning that shifts the fire regime from predominantly large, high-intensity late dry season fires to a more
benign, early dry season fire regime.However, theAustralian savannas are vast and there is significant variation inweather

conditions and seasonality, which is likely to result in spatial and temporal variations in the commencement and length of
late dry season conditions. Here, we assess the temporal and spatial consistency of the commencement of late dry season
conditions, defined as those months that maximise fire size and where the most extreme fire weather conditions exist. The
results demonstrate that significant yearly, seasonal and spatial variations in fire size and fire weather conditions exist,

both within and between bioregions. The effective start of late dry season conditions, as defined by those months that
maximise fire size and where the most extreme fire weather variables exist, is variable across the savannas.
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Introduction

The savannas of northernAustralia cover over 2million km2 and
have very low human population density, limited infrastructure

and relatively intact natural ecosystems (Woinarski et al. 2007).
This region has a monsoonal climate, with an intense wet season
followed by a long, warm dry season of 6–9 months that is

typically rain-free and highly fire-prone (Cook and Heerdegen
2001). Fire frequency across the Australian savannas is among
the highest in the world (Andersen et al. 2005; Russell-Smith
et al. 2007).

Much of the scientific literature considers fire behaviour in
northern Australia to be qualitatively different in the early dry
season compared with the late dry season (Andersen et al. 1998;

Russell-Smith et al. 2007). Breaking fire behaviour into tempo-
ral classes (namely, early dry season (EDS) and late dry season
(LDS)) facilitates accounting of smoke emissions, including

greenhouse gases, and has become embedded into the scientific
thinking. This can be seen in the national greenhouse gas (GHG)
accounting methodologies in the National Inventory Report

(National Greenhouse Gas Inventory Committee 2007; Meyer
et al. 2015). Cook et al. (1995) argued that ‘maintaining a
regime of frequent but low intensity and patchy fires is probably
the best practical way to minimise the release of undesirable

trace gases’ and showed that the release of GHG from individual
fires was substantially higher in late rather than in early dry
season fires (Cook 2003). With further development (Russell-

Smith et al. 2003; Russell-Smith et al. 2009a), this approachwas
successfully piloted in the Western Arnhem Land Fire Abate-
ment project (Fig. 1) (Russell-Smith et al. 2013) and led to the

development of GHG mitigation methodologies (Common-
wealth ofAustralia 2012, 2015, 2018) that are nowbeing applied
and advocated across northern Australia’s savannas. These
methodologies are part of Australia’s emissions reduction

strategy and provide tradable carbon credits.
The bulk of the research underpinning the methodologies was

conducted in Kakadu National Park (Hurst et al. 1994; Cook

2003) and the adjoiningWestern Arnhem Land (Fig. 1) (Russell-
Smith and Edwards 2006; Russell-Smith et al. 2009b). Although
additional fuel load and emissions measurements have been

undertaken across northern Australia (Meyer et al. 2015; Yates
et al. 2015), there has been no explicit testing of the assumption
that the categorisation of fires into either low-intensity early or

high-intensity late classes applies in all years across this region or
of the assumption that a consistent date distinguishing the two
categories applies across the whole region. Currently, the 2015
Emissions Reduction Fund (ERF) Savanna Fire Management
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Determination defines the EDS as ending on 31 July and the LDS
starting on 1August and ending on 31December across the entire

eligible area of the Australian tropical savanna.
To address the question of whether two classes of fires are

adequate, we need to examine spatial and temporal variations in

both the drivers of fire behaviour and the measurable statistics
describing fire occurrence. Fire characteristics change through
the dry season. These changes include the drivers of fire behav-
iour (e.g. the severity of fire weather, fuel curing and fuel load),

the properties of fires (e.g. the rate of fire spread, Byram fire line
intensity, fire radiative power) and the combustion processes (e.g.
fuel burning efficiency). Fire size and fire patchiness are emer-

gent properties from the combined effects of these characteristics.
Most fire characteristics have not been measured at the subconti-
nental and multi-year scales required for an exploration of the

spatial and temporal variations in fires across northern Australia.
However, two datasets are available at appropriate scales to
address this question: the Canadian Fire Weather Index (FWI)

(Field et al. 2015) and the 30-year Landgate fire area product. The
FWI provides an index of potential fire weather and the Landgate
data provide a measure of realised fire activity.

Where a landscape is continuously vegetated and not dis-

sected by human activity, fires should be limited by fire weather
rather than by artificial landscape barriers. Northern Australia,
with its extremely low human population density for the tropical

savanna biome (Woinarski and Dawson 2002), is an ideal
location to examine the relationship between fire weather and
fire size. In this study we assessed seasonal changes in fire

weather indices and fire size across six northern Australian
(Interim Biogeographic Regionalisation of Australia: IBRA)
bioregions over the past 28 years. We examined the spatial and

temporal patterns of fire activity in the EDS and LDS across the
low rainfall zone (600–1000 mm annual rainfall) and the high
rainfall zone (.1000 mm) covered by the 2015 ERF Savanna
Fire Management Determination.

Methods

We present a comparison of six representative bioregions that
reflect the variation in weather across the study area and the
associated variation in the relationship between the FWI and fire

size (Fig. 2): three from the high rainfall zone (.1000 mm mean

annual rainfall) in Western Australia (Northern Kimberly), the
Northern Territory (Arnhem Coast) and Queensland (Cape York
Peninsula) and three from the low rainfall zone (600–1000 mm

meanannual rainfall) inWesternAustralia (CentralKimberly), the
Northern Territory (Sturt Plateau) and Queensland (Gulf Plains).

Seasonal changes in fire size

The longest continuous time series of fire activity in Australia is
produced by Landgate (www.landgate.wa.gov.au, accessed 16
February 2017). The time series extends from January 1988 to

the present, at a time resolution of 1 month and a spatial reso-
lution of 1 km2. The product is derived from the National
Oceanic and Atmospheric Administration’s Advanced Very

High-Resolution Radiometer (NOAA AVHRR) imagery and
fire scars are identified from reflectance changes between suc-
cessive 10-day image pairs. This is the dataset that provides the

activity data for Australia’s National Inventory Reports to the
United Nations Framework Convention on Climate Change.

Fire-affected areas are defined as fire scar polygons. Landgate-
derived fire scars provide the spatial location of the fire-affected

area, which month the fire occurred in and the size of the fire scar
in that month. Landgate monthly fire scar vector files (shapefiles)
were intersected with the polygons defining the Interim Biogeo-

graphic Regionalisation for Australia (IBRA) bioregions. After
removing artefact sliver polygons less than 100 ha in area, the
monthly shapefiles were merged into a continuous time series

from 1988 to 2015. The attribute table was then combined by a
spatial join with that of the vegetation layer used in the National
InventoryReport and theERF tool, SAVBAT2, to identify all fire

polygons falling partly or completely within the savanna wood-
land region of northern Australia as defined in the 2015 ERF
methodology (Commonwealth of Australia 2015).

Fire size accumulation plots were derived for representative

high and low rainfall bioregions by adding total burnt area (km2:
1988–2015) for each month and bioregion. Using this method,
the length of the line in each month illustrated the quantum of

area burnt in all years, reflecting both the number of fires and the
area burnt. Bioregions that follow the seasonal patterns pre-
scribed in the savanna burning methodology (2015) displayed

the largest accumulation of fire area (longest lines) between
August and December.

Fire Weather Index

The Canadian FWI has been derived globally, based on for-
mulae set out by Van Wagner (1987). The FWI is particularly
pertinent for this study because it is derived using variables that

aim to represent the peak daily intensity of a fire and reflects the
energy output rate per unit length of fire front. Therefore, if a
strong relationship exists between fire size (i.e. reflecting real-
ised fire spread) and increasing FWI, then the higher FWI value

should also reflect increased intensity, which in turn has been
directly correlated with decreased patchiness (Dowdy et al.

2009). A linear regression was used to assess the relationship

between mean monthly FWI and mean fire size for each bio-
region. We expected weaker relationships between fire weather
and fire size in areas with the higher interannual variation.

We averaged our FWI and fire size values for each month over
28 years because this best reflects the methods used to define
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Fig. 1. The study area, including high (light blue) and low (darker blue)

rainfall areas and boundaries of the Kakadu National Park (left red polygon)

and West Arnhem Land Fire Abatement project (right red polygon).
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the high and low rainfall regions in the savanna burning
methodology.

We also present a summary of the linear models for each of

the 28 years to demonstrate the influence of interannual varia-
tion in weather and report the mean, median and standard
deviation of the R2 values across the 28 years. In low average
annual rainfall regions we expected to record high interannual

variation in rainfall, which will influence fuel accumulation and
fuel connectivity. Regions that exhibit consistent annual rainfall
seasonality are likely to have consistently stronger relationships

between fire weather and fire size and higher median R2 values.
We quantified the consistency of the strength of the linear
relationship by reporting the number of years (n ¼ 28) where

R2 exceeded 0.5. We also present a polar plot illustrating
monthly FWI values for each year to reflect the interannual
variation in seasonal fire weather between representative high
and low rainfall bioregions.

The FWI is derived using variables that relate to fire spread
and fuel availability and combustibility. In simple terms,
FWI ¼ initial spread index (ISI) þ buildup index (BUI).

Weather variables used to estimate ISI and BUI are presented
in Fig. 3. Global FWI values at a 0.5 degree resolution were
downloaded from the global fire weather database (https://data.
giss.nasa.gov/impacts/gfwed/, accessed 18 May 2016) and

clipped to the Australian continent. The values were then
intersected with the 1-km standard grid used to extract other
values in the study area. To summarise FWI at the regional and

subregional scale, changes in FWI were extracted for each
representative high and low rainfall regions and presented in
polar plots (Whickam 2009) derived in R (R Development Core

Team 2014). The FWI data used in these analyses were derived
from daily data by extracting the 70th percentile of FWI for each
month in each region and sub-region using the quantile function
in R (R Development Core Team 2014).
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Fig. 2. (a, c, e) High rainfall regions and (b, d, f ) low rainfall regions in the study area.
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In Australia the McArthur Forest Fire Danger Index (FFDI)

(McArthur 1967) is widely used to forecast the influence of
weather on fire behaviour and the Australian Bureau of Meteo-
rology issues forecasts of the Grassland and Forest Fire Danger

Index (GFDI and FFDI) for use by fire authorities. The FFDI and
GFDI have an associated set of classification thresholds ranging
from low to extreme, as shown in Table 1. Dowdy et al. (2009)

describes implementation of the FWI systemoverAustralia using
gridded numerical weather prediction model fields and an 8-year
dataset of daily values. The FWI fields are compared with an

equivalent set of FFDI fields (calculated from the same set of
meteorological inputs). Classification thresholds of the FWIwere
calculated based on those of the FFDI by matching percentiles of
the FWI to percentiles of FFDI throughout Australia. Thus, FWI

values over 64 are approximately equivalent to a very high fire
danger rating. In this study we assessed the month in which the
median 70th percentile of FWI values exceeded this level.

Results

Seasonal variation in fire size and FWI in the high rainfall
zone (.1000 mm year21)

When aggregating to region, across years, there was a strong
relationship between the size of the largest fires (70th percentile)

and the mean monthly FWI (70th percentile) for bioregions in
the high rainfall zone (Figs 4, 5).

The cumulative fire size increased roughly linearly between

May and October in the Northern Kimberly bioregion (Fig. 4b).
There was a linear relationship between FWI and fire size in the
Northern Kimberley (R2 ¼ 0.8) (Fig. 6b). The relationship

between fire weather and fire size was relatively consistent
across 28 years, with 20 years above R2 of 0.5 and a median R2

value of 0.61 (Table 2). The FWI was consistently greater than

60 between May and November (Fig. 4a).
For the Arnhem Coast bioregion, the 70th percentile of FWI

for all months and fire sizes (70th percentile) were strongly
related (R2¼ 0.85) (Fig. 6a). The regression also illustrates that

fire size was maximised above a FWI value of 75. The FWI was
consistently higher between August and October (Fig. 4c), with

the largest fires occurring between July and October (Fig. 4d).
Seasonality was very consistent across time, with 25 of the
28 years exhibiting a strong relationship between fire size and

fire weather (median R2 of 0.72) (Table 2).
For the Cape York Peninsula bioregion there was a similar

linear relationship toArnhemCoast but not as strong (R2¼ 0.74)

(Fig. 6b) and less consistent, with 19 of the 28 years above 0.5
and a lower median R2 value of 0.58 (Table 2). The FWI was
consistently high (.60) between August and November
(Fig. 4e). The largest fires were observed between July and

November, with the greatest accumulation occurring from
September to November (Fig. 4f ).

Seasonal variation in the low rainfall zone (600–
1000 mm year21)

The seasonality in the low rainfall zone was less consistent than
in the high rainfall zone. For all three bioregions, the FWI reg-

ularly exceeded the very high fire danger threshold in April and
continued through to December (Fig. 5a, c, e).

Fire weather
observations

Fuel moisture
codes

Fire behaviour
indices

Initial Spread
Index (ISI)

Buildup Index
(BUI)

Fire Weather
Index (FWI)

Fine Fuel moisture
Code (FFMC)

Duff Moisture
Code (DMC)

Drought Code
(DC)

Temperature,
relative humidity,
wind, rain

Temperature,
relative humidity,
rain

Wind Temperature, rain

Fig. 3. Components of the Fire Weather Index (FWI; Canadian Wildland Fire Information System http://cwfis.

cfs.nrcan.gc.ca/background/summary/fwi, accessed 7 July 2018).

Table 1. Comparison of commonly used fire danger ratings

Comparing the McArthur Forest Fire Danger Index (FFDI), the Grassland

Fire Danger Index (GFDI) and theCanadian FireWeather Index (FWI). FWI

ratings (used in this analysis) are presentedwith the analogous ratings for the

GFDI and FFDI methods commonly used in Australia

Fire danger rating FFDI range GFDI range FWI range

Low 0–5 , 2.5 0–14

Moderate 5–12 2.5–7.5 14–35

High 12–24 7.5–20 35–64

Very high 24–50 20–50 64–122

Extreme . 50 . 50 .122
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The Central Kimberly bioregion demonstrated a relatively

strong relationship between fire size and FWI (R2 ¼ 0.83)
(Fig. 6d) and displayed a similar relationship to the adjacent
high rainfall Northern Kimberly where FWI .40 predicted

larger fires but did not express a linear relationship beyond
FWI of ,60 (Fig. 6d). However, the relationship was weak
when considering interannual variation with a much lower

median R2 of 0.43, high standard deviation (0.23) and only 10
of the 28 years above R2 0.5 (Table 2). Fire accumulation was
similar between April and November, with a reduction in fire-
affected areas in June and July (Fig. 5b). The FWI remained

high across the year and was mostly .60 between April and
November (Fig. 5a).

The Sturt Plateau showed a very weak relationship between

FWI and mean fire size (R2 ¼ 0.33) (Fig. 6f), which was
consistently low across the 28-year period (median R2 of 0.19)
and highly variable (standard deviation 0.18) (Table 2). Only 2 of

the 28 years exceeded an R2 of 0.5 (Table 2). In this region FWI
values below 50 restricted fire size and values above 80 max-
imised fire size, but between FWI 60 and 100 the residuals were

very large (Fig. 6f). Slightly larger fires were observed between
May and August, but the majority of large fires occurred between
September and November (Fig. 5d). The FWI remained greater
then 60 for the entire year except for December (Fig. 5c).

The Gulf Plains bioregion had a weak linear relationship
between FWI and fire size (R2¼ 0.39) (Fig. 6e) and a lowmedian
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Fig. 4. High rainfall bioregions. (a, c, e) Median and interquartile range of monthly 70th percentile Fire Weather Index (FWI). Solid horizontal line

indicates FWI threshold value for ‘Very High’ fire danger. (b, d, f) Cumulative fire size (km2) of all fires detected by Landgate for each month over 28 years.

Each tic label on the y-axis represents 200 � 103 km2. Dotted horizontal lines highlight the start and end of the late dry season as defined by the savanna

burning methodology.
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R2, 0.21,with a relatively high standard deviation (0.15) (Table 2).
A relatively strong relationship between FWI and fire size was

only recorded once in 28 years (Table 2). The FWI remained high
(.60) for the entire year with an increasing fire-affected area
evident from July toNovember (peaking inNovember, Fig. 5e, f ).

Temporal variation in the FWI

The Arnhem Coast bioregion demonstrated the most consistent
seasonal pattern, with a distinct and dependable wet season
followed by a gradual increase in FWI from April, leading to

extreme fire weather between August and November, decreas-
ing again in December (Fig. 7a). Cape York Peninsula followed
a similar pattern; however, the FWI was more extreme in

September (Fig. 7c). In contrast, the FWI in the low rainfall

zones was far less consistent across years, remaining high
throughout the nominal wet season period (January–March)

(Fig. 7). The FWI and fire size had a strong relationship in the
Central Kimberly bioregion and this region demonstrated a far
more consistent seasonal pattern of low FWI between January
andMarch (Fig. 7d) when compared with the Gulf Plains, which

did not have a consistent wet season across years (Fig. 7b).

Discussion

We present an analysis of seasonality based on the fire weather

conditions that support large fires. The results demonstrated that
significant seasonal variation in fire size and fire weather exists
both within and between rainfall zones, and within and between

bioregions. In particular, the seasonality in both the FWI and fire
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Fig. 5. Low rainfall bioregions. (a, c, e) Median (70th percentile) and interquartile range of monthly fire size with each year shown as points. (b, d, f )

Cumulative fire size (km2) of all fires detected by Landgate for each month over 28 years. Each tic label on the y-axis represents 200 � 103 km2. Dotted

horizontal lines highlight the start and end of the late dry season as defined by the savanna burning methodology.
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size in the low rainfall zone was less consistent than in the high
rainfall zone. In addition, the very high fire danger period
occurred over a longer period in the low rainfall zone (April–
December) compared with the high rainfall zone.

The strongest relationship between FWI and fire size was
observed in the Arnhem Coast bioregion where the annual
variance in FWI was also relatively consistent in the LDS. In
this bioregion, the largest fires and highest FWI occurred

High rainfall
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Fig. 6. Relationship between mean monthly Fire Weather Index (70th percentile) and mean monthly fire size

(70th percentile).
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between July andOctober. The CapeYork Peninsula bioregion
is large and diverse and includes rainforest-dominated regions

supporting higher than average annual rainfall and lower
than average temperatures, which influences the mean when
aggregating results in this region. Median September FWI in

the Cape York Peninsula was roughly equivalent to the
Arnhem Coast July level, reflecting a 2-month difference in

peak fire weather conditions. The largest fires occurred con-
sistently in November – 1 month later than in the Arnhem
Coast bioregion.

Table 2. Summary of the relationship between large fires and the Fire Weather Index for each of the six northern Australian bioregions and for

each year (1988–2015)

Presenting the mean (Mean R2), standard deviation (s.d. R2) and median (Median R2) R2 values for annual linear regressions (n¼ 28) comparing the

relationship between the Fire Weather Index and fire size. Also reporting the number of years where the R2 value was greater than 0.5 (Years R2 . 0.5)

Bioregion Mean R2 s.d. R2 Median R2 Years R2 . 0.5

Sturt Plateau 0.21 0.18 0.19 2

Central Kimberly 0.41 0.23 0.43 10

Gulf Plains 0.24 0.15 0.21 1

Arnhem Coast 0.69 0.13 0.72 25

Cape York Peninsula 0.54 0.21 0.58 19

Northern Kimberly 0.56 0.18 0.61 20
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The relationship between FWI and fire size in the Northern
Kimberly was slightly weaker than in the Cape York Peninsula
and the Arnhem Coast and the fire season started abruptly in

April–May in most years. The difference between the EDS and
LDS was minimal, with the data indicating that large fires
occurred across most of the year. In the low rainfall zone, the

Central Kimberly bioregion is adjacent to the high rainfall
Northern Kimberly bioregion and showed a similar pattern in
fire seasonality with a relatively early start to the fire season. In

the Central Kimberley, the relationship between FWI and fire
size was high, which is anomalous for the low rainfall bioregion.
This is likely to be related to the prevalence of cyclone-driven
rain events that are common in this region (Charles et al. 2015),

evidenced in this study through consistently low FWI values
during the wet season months.

The poor relationship between the FWI and fire size in the

Sturt Plateau suggested that this bioregion does not demonstrate
strong seasonal changes in fire size across time. Similarly,
although the relationship was stronger in the Gulf Plains, the

distinction between the wet season, EDS and LDSwas less clear
than in the high rainfall zone.

The results demonstrated that the effective start of LDS

conditions, as defined by those months that maximise fire size
and where the most extreme fire weather variables exist, varied
across the savannas depending on the annual consistency of fire
weather indices. This has implications for the adequacy of

carbon accounting and a potential effect on biodiversity conser-
vation where fire management activities are based on the EDS
and LDS definitions in the methodology rather than the realised

regional seasonality.
We used fire size as a proxy for fire intensity and uniformity

on the assumption that larger fires indicate a more connected

landscape and more complete combustion. For a fire to leave
unburnt patches the fire has to be extinguished. This could
happen because the fuel load is uneven and too low in some
patches for the vegetation to support a fire. If fuels are discon-

tinuous, such as in a spinifex grassland, gaps between fuel
patches might be too large for the fire to preheat adjacent
unburnt fuels to ignition (Cheney and Sullivan 1997). Extinction

of the fire in patches could also occur if fuel moisture or grass
curing is patchy, because fuel moisture is one of the factors
determining rate of heat release. It is particularly important in

grasslands where senescence and curing are a feature of grass
phenology; when fuel moisture content values exceed,20% of
fuel dry weight, combustion is unsustainable and fires are

unlikely to spread (Cheney et al. 1998). This occurs when grass
swards are less than 50% cured; where fuel characteristics are
non-uniform, patches of uncured grass or moist fuel lead to
unburnt patches.

Heterogeneity of grass curing (and hence fuel moisture) also
leads to decreases in the maximum rate of fire spread (Hilton
2015), as slower moving fires are more likely to extinguish and

patchy fires tend to be small fires. Uniform fires, by contrast, can
continue to expand for long periods and leave large scars. Hence
fire size should be an indicator of fire intensity and a seasonal

progression of mean fire size might be a useful indicator of the
seasonal transition in fire behaviour. Under these assumptions,
the LDS, as defined in the carbon abatementmethodology, is not
consistent across bioregions and particularly between the low

and high rainfall zones. However, validation of these assump-
tions will require field testing of the relationships between fire
size, intensity and patchiness across the climatic and edaphic

variance in the study area.

Conclusions

The savanna-wide characterisation of low-intensity early and
high-intensity late dry season fires is ambiguous. The charac-

terisation is clearer in the higher-rainfall bioregions of the
savannaswhere temporal and spatial seasonal variability between
years is low. Lower rainfall areas exhibit weaker seasonal pat-

terns in fire size and fire weather and higher spatial and temporal
variability. The temporal and spatial variations in the com-
mencement and length of LDS conditionswithin and between the

six bioregions presented here and at a subregional level (https://
publications.csiro.au/rpr/pub?list¼SEA&pid¼csiro:EP186538,
accessed 1 July 2019) suggests that the step change in burning
efficiency and patchiness assumed by the ERF methodology

between the EDS and LDS and between the high and low rainfall
zones, requires further assessment to provide a more realistic
approach to assessing changes in emissions.
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