6 research outputs found

    The contribution of more sensitive hepatitis B surface antigen assays to detecting and monitoring hepatitis B infection

    No full text
    International audienceBackground: Hepatitis B surface antigen (HBsAg) remains the main viral marker for screening and monitoring hepatitis B virus (HBV) infection. The quantification limit of most current HBsAg assays is around 0.05 IU/mL. The Lumipulse-G-HBsAg-Quant assay (Fujirebio) claims to obtain a tenfold improvement in sensitivity. This study aimed to assess the performance of this assay in detecting low HBsAg levels in clinical samples.Methods: Three panels of stored frozen samples were selected on the basis of HBV-DNA and HBsAg values obtained previously with routine techniques. Panels 1 (n=13) and 2 (n=52) consisted of DNA-positive/HBsAg-negative samples from individuals in the window period and with occult HBV infection respectively. Panel 3 comprised 23 samples with low or discrepant HBsAg screening results. All these samples were tested retrospectively with the DiaSorin and Fujirebio HBsAg assays.Results: Sixteen out of 65 samples (25 %), initially screened HBsAg negative, were reactive only with the Fujirebio assay (median value= 0.015 IU/mL; IQR= 0.012): three (23 %) samples from panel 1 and 13 (25 %) from panel 2. Thirteen of these 16 (81 %) had HBsAg values below 0.03 IU/mL with the DiaSorin assay. In panel 3, 22 (96 %) samples were quantified successfully with the Fujirebio assay (median: 0.32 IU/mL; IQR: 1.20) and 19 (83 %) with the DiaSorin assay (median: 0.31 IU/mL; IQR: 0.65). Concentrations obtained with the two assays showed good correlations (r=0.893, Spearman).Conclusions: HBsAg assays with enhanced analytical sensitivity could improve HBV serological profile interpretation with possible consequences on clinical management of infected patients, and on blood transfusion safety

    Characterization of hepatitis B viral forms from patient plasma using velocity gradient: Evidence for an excess of capsids in fractions enriched in Dane particles

    No full text
    International audienceHepatitis B virus (HBV) morphogenesis is characterized by a large over-production of subviral particles and recently described new forms in parallel of complete viral particles (VP). This study was designed to depict circulating viral forms in HBV infected patient plasmas, using velocity gradients and most sensitive viral markers. Plasmas from chronic hepatitis B (CHB) patients, HBeAg positive or negative, genotype D or E, were fractionated on velocity and equilibrium gradients with or without detergent treatment. Antigenic and molecular markers were measured in plasma and in each collected fraction. Fast Nycodenz velocity gradients revealed good reproducibility and provided additional information to standard equilibrium sucrose gradients. HBV-RNAs circulated as enveloped particles in all plasmas, except one, and at lesser concentrations than VP. Calculations based on standardized measurements and relative virion and subviral particle molecular stoichiometry allowed to refine the experimental approach. For the HBeAg-positive plasma, VP were accompanied by an overproduction of enveloped capsids, either containing HBs, likely corresponding to empty virions, or for the main part, devoid of this viral envelope protein. Similarly, in the HBeAg-negative sample, HBs enveloped capsids, likely corresponding to empty virions, were detected and the presence of enveloped capsids devoid of HBs protein was suspected but not clearly evidenced due to the presence of contaminating high-density subviral particles. While HBeAg largely influences HBcrAg measurement and accounts for two-thirds of HBcrAg reactivity in HBeAg-positive patients, it remains a 10 times more sensitive marker than HBsAg to characterize VP containing fractions. Using Nycodenz velocity gradients and standardized biomarkers, our study proposes a detailed characterization of circulating viral forms in chronically HBV infected patients. We provide evidence for an excess of capsids in fractions enriched in Dane particles, likely due to the presence of empty virions but also by capsids enveloped by an HBs free lipid layer. Identification of this new circulating viral particle sets the basis for studies around the potential role of these entities in hepatitis B pathogeny and their physiological regulation

    Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42-Tuba pathway.

    No full text
    International audienceAccumulation of type I collagen fibrils in tumors is associated with an increased risk of metastasis. Invadosomes are F-actin structures able to degrade the extracellular matrix. We previously found that collagen I fibrils induced the formation of peculiar linear invadosomes in an unexpected integrin-independent manner. Here, we show that Discoidin Domain Receptor 1 (DDR1), a collagen receptor overexpressed in cancer, colocalizes with linear invadosomes in tumor cells and is required for their formation and matrix degradation ability. Unexpectedly, DDR1 kinase activity is not required for invadosome formation or activity, nor is Src tyrosine kinase. We show that the RhoGTPase Cdc42 is activated on collagen in a DDR1-dependent manner. Cdc42 and its specific guanine nucleotide-exchange factor (GEF), Tuba, localize to linear invadosomes, and both are required for linear invadosome formation. Finally, DDR1 depletion blocked cell invasion in a collagen gel. Altogether, our data uncover an important role for DDR1, acting through Tuba and Cdc42, in proteolysis-based cell invasion in a collagen-rich environment
    corecore