55 research outputs found

    Automated Pulmonary Artery Segmentation By Vessel Tracking In Low-Dose Computed Tomography Images

    Full text link
    Low-dose computed tomography (CT) imaging provides a method for obtaining accurate anatomical information without the full radiation exposure inherent in standard CT protocols, and is primarily used in lung cancer screening. Segmentation of the pulmonary arteries from low-dose chest CT images is a vital first step in improving computer-aided detection of frequently missed pulmonary nodules near major arteries. This thesis presents the first fully automated method for segmenting the main pulmonary arterial trees in low-dose CT images. The correlation between the arterial and airway trees was used to develop an automated pulmonary artery seed point detector. The main basal pulmonary arteries are identified by searching for candidate vessels near known airways, using a progressive morphological opening method. The arteries are tracked into the lungs by means of a cylindrical vessel tracker that iteratively fits model cylinders to the CT image. Vessel bifurcations are detected by measuring the rate of change of vessel radii. Subsequent vessels are segmented by initiating new cylinder trackers at bifurcation points. Quantitative analysis of both the number of arteries and veins segmented, as well as the error per vessel, was accomplished with a novel evaluation metric called the Sparse Surface (SS) metric. The SS metric was developed to capture the details of the true vessel surface while reducing the ground-truth marking burden on the human user. This metric is a unique new tool for ground truth marking and segmentation validation, with particular importance in problems with complex geometries. The segmentation method and SS metric were applied to a dataset of seven CT images, and achieved an overall sensitivity of 0.62 and specificity of 0.90 of all manually identified vessels. The average root mean square error between the vessel surface and the segmentation surface was 0.63 mm, or less than 1 voxel. Additionally, seed points were detected automatically for a majority (80%) of cases with labeled airways. This method is an important first step towards robust pulmonary artery segmentation and artery/vein separation in low-dose chest CT, and is the first fully automated method designed for accomplishing this task

    Optimal partial-arcs in VMAT treatment planning

    Full text link
    Purpose: To improve the delivery efficiency of VMAT by extending the recently published VMAT treatment planning algorithm vmerge to automatically generate optimal partial-arc plans. Methods and materials: A high-quality initial plan is created by solving a convex multicriteria optimization problem using 180 equi-spaced beams. This initial plan is used to form a set of dose constraints, and a set of partial-arc plans is created by searching the space of all possible partial-arc plans that satisfy these constraints. For each partial-arc, an iterative fluence map merging and sequencing algorithm (vmerge) is used to improve the delivery efficiency. Merging continues as long as the dose quality is maintained above a user-defined threshold. The final plan is selected as the partial arc with the lowest treatment time. The complete algorithm is called pmerge. Results: Partial-arc plans are created using pmerge for a lung, liver and prostate case, with final treatment times of 127, 245 and 147 seconds. Treatment times using full arcs with vmerge are 211, 357 and 178 seconds. Dose quality is maintained across the initial, vmerge, and pmerge plans to within 5% of the mean doses to the critical organs-at-risk and with target coverage above 98%. Additionally, we find that the angular distribution of fluence in the initial plans is predictive of the start and end angles of the optimal partial-arc. Conclusions: The pmerge algorithm is an extension to vmerge that automatically finds the partial-arc plan that minimizes the treatment time. VMAT delivery efficiency can be improved by employing partial-arcs without compromising dose quality. Partial arcs are most applicable to cases with non-centralized targets, where the time savings is greatest

    Multicriteria VMAT optimization

    Full text link
    Purpose: To make the planning of volumetric modulated arc therapy (VMAT) faster and to explore the tradeoffs between planning objectives and delivery efficiency. Methods: A convex multicriteria dose optimization problem is solved for an angular grid of 180 equi-spaced beams. This allows the planner to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus organ at risk sparing. The selected plan is then made VMAT deliverable by a fluence map merging and sequencing algorithm, which combines neighboring fluence maps based on a similarity score and then delivers the merged maps together, simplifying delivery. Successive merges are made as long as the dose distribution quality is maintained. The complete algorithm is called VMERGE. Results: VMERGE is applied to three cases: a prostate, a pancreas, and a brain. In each case, the selected Pareto-optimal plan is matched almost exactly with the VMAT merging routine, resulting in a high quality plan delivered with a single arc in less than five minutes on average. VMERGE offers significant improvements over existing VMAT algorithms. The first is the multicriteria planning aspect, which greatly speeds up planning time and allows the user to select the plan which represents the most desirable compromise between target coverage and organ at risk sparing. The second is the user-chosen epsilon-optimality guarantee of the final VMAT plan. Finally, the user can explore the tradeoff between delivery time and plan quality, which is a fundamental aspect of VMAT that cannot be easily investigated with current commercial planning systems

    Patterns of somatic structural variation in human cancer genomes.

    Get PDF
    A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes1-7. Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types8. Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions-as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2-7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and-in liver cancer-frequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act

    Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition.

    Get PDF
    About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors

    Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition

    Get PDF
    About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors

    Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing

    Get PDF
    Funder: Ludwig Center at HarvardFunder: National Cancer Institute: K22CA193848Funder: US National Institutes of Health Intramural Research Program Project Z1AES103266Abstract: Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer
    • …
    corecore