7,472 research outputs found

    Period and toroidal knot mosaics

    Full text link
    Knot mosaic theory was introduced by Lomonaco and Kauffman in the paper on `Quantum knots and mosaics' to give a precise and workable definition of quantum knots, intended to represent an actual physical quantum system. A knot (m,n)-mosaic is an m ⁣× ⁣nm \! \times \! n matrix whose entries are eleven mosaic tiles, representing a knot or a link by adjoining properly. In this paper we introduce two variants of knot mosaics: period knot mosaics and toroidal knot mosaics, which are common features in physics and mathematics. We present an algorithm producing the exact enumeration of period knot (m,n)-mosaics for any positive integers m and n, toroidal knot (m,n)-mosaics for co-prime integers m and n, and furthermore toroidal knot (p,p)-mosaics for a prime number p. We also analyze the asymptotics of the growth rates of their cardinality

    Variables Assemblage

    Get PDF
    Variables Assemblage focuses on everyday urban objects that are ubiquitous and non-descript. These objects are embedded parts and foundations of cities that have specific functions. These objects possess no significant characteristics, but they are structural elements in their everyday urban environment, and the relationship between the objects and the environment is reciprocal. Through examining and transforming these objects, their presence and new contexts in Variables Assemblage interact in new and different ways according to the viewers understanding and perception of these objects. This transformation considers the inherent quality of insignificant everyday objects, ones perception of them, and their relation to their environment

    Gender differences in participatory leadership: An examination of principals’ time spent working with others

    Get PDF
    The purpose of this study was to examine whether female principals have a more participatory style compared to their male counterparts by examining principals’ daily time allocation patterns. The study analyzed data from End of Day (EOD) survey logs from principals in an urban school district. Results from hierarchical linear modeling (HLM) results showed that female principals, when compare to male principals, spent a higher proportion of their time working with others in planning/setting goals. At the same time, there were no differences in how principals allocated their time total working alone or working with others and their time distribution in other leadership domains. The findings suggest that gender differences in leadership style depend on specific activity domains and that there are significant differences in the key domain of strategic planning

    Overexpression of Cancer-Associated Genes via Epigenetic Derepression Mechanisms in Gynecologic Cancer

    Get PDF
    Like other cancers, most gynecologic cancers are caused by aberrant expression of cancer-related genes. Epigenetics is one of the most important gene expression mechanisms, which contribute to cancer development and progression by regulating cancer-related genes. Since the discovery of differential gene expression patterns in cancer cells when compared with normal cells, extensive efforts have been made to explore the origins of abnormal gene expression in cancer. Epigenetics, the study of inheritable changes in gene expression that do not alter DNA sequence is a key area of this research. DNA methylation and histone modification are well-known epigenetic mechanisms, while microRNAs and alternative splicing have recently been identified as important regulators of epigenetic mechanisms. These mechanisms not only affect specific target gene expression but also regulate the functioning of other epigenetic mechanisms. Moreover, these diverse epigenetic regulations occur simultaneously. Epigenetic regulation of gene expression is extraordinarily complicated and all epigenetic mechanisms to be studied at once to determine the exact gene regulation mechanisms. Traditionally, the contribution of epigenetics to cancer is thought to be mediated through the inactivation of tumor suppressor genes expression. But recently, it is arising that some oncogenes or cancer-promoting genes (CPGs) are overexpressed in diverse type of cancers through epigenetic derepression mechanism, such as DNA and histone demethylation. Epigenetic derepression arises from diverse epigenetic changes, and all of these mechanisms actively interact with each other to increase oncogenes or CPGs expression in cancer cell. Oncogenes or CPGs overexpressed through epigenetic derepression can initiate cancer development, and accumulation of these abnormal epigenetic changes makes cancer more aggressive and treatment resistance. This review discusses epigenetic mechanisms involved in the overexpression of oncogenes or CPGs via epigenetic derepression in gynecologic cancers. Therefore, improved understanding of these epigenetic mechanisms will provide new targets for gynecologic cancer treatment

    Matrix metalloproteinases as therapeutic targets in breast cancer

    Get PDF
    Matrix metalloproteinases (MMPs) are the most prominent proteinases involved in tumorigenesis. They were initially recognized to promote tumor progression by remodeling the extracellular matrix through their proteolytic activity. However, accumulating evidence has revealed that some MMPs have protective roles in cancer progression, and the same MMP can exert opposing roles depending on the cell type in which it is expressed or the stage of cancer. Moreover, studies have shown that MMPs are involved in cancer progression through their roles in other biological processes such as cell signaling and immune regulation, independent of their catalytic activity. Despite the prognostic significance of tumoral or stromal expression of MMPs in breast cancer, their roles and molecular mechanisms in breast cancer progression remain unclear. As the failures of early clinical trials with broad-spectrum MMP inhibitors were mainly due to a lack of drug specificity, substantial efforts have been made to develop highly selective MMP inhibitors. Some recently developed MMP inhibitory monoclonal antibodies demonstrated promising anti-tumor effects in preclinical models of breast cancer. Importantly, anti-tumor effects of these antibodies were associated with the modulation of tumor immune microenvironment, suggesting that the use of MMP inhibitors in combination with immunotherapy can improve the efficacy of immunotherapy in HER2-positive or triple-negative breast cancer. In this review, the current understanding of the roles of tumoral or stromal MMPs in breast cancer is summarized, and recent advances in the development of highly selective MMP inhibitors are discussed
    corecore