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Matrix metalloproteinases (MMPs) are the most prominent proteinases involved in

tumorigenesis. They were initially recognized to promote tumor progression by

remodeling the extracellular matrix through their proteolytic activity. However,

accumulating evidence has revealed that some MMPs have protective roles in

cancer progression, and the sameMMP can exert opposing roles depending on the

cell type in which it is expressed or the stage of cancer. Moreover, studies have

shown that MMPs are involved in cancer progression through their roles in other

biological processes such as cell signaling and immune regulation, independent of

their catalytic activity. Despite the prognostic significance of tumoral or stromal

expression of MMPs in breast cancer, their roles and molecular mechanisms in

breast cancer progression remain unclear. As the failures of early clinical trials with

broad-spectrum MMP inhibitors were mainly due to a lack of drug specificity,

substantial efforts have been made to develop highly selective MMP inhibitors.

Some recently developed MMP inhibitory monoclonal antibodies demonstrated

promising anti-tumor effects in preclinical models of breast cancer. Importantly,

anti-tumor effects of these antibodies were associated with the modulation of

tumor immune microenvironment, suggesting that the use of MMP inhibitors in

combination with immunotherapy can improve the efficacy of immunotherapy in

HER2-positive or triple-negative breast cancer. In this review, the current

understanding of the roles of tumoral or stromal MMPs in breast cancer is

summarized, and recent advances in the development of highly selective MMP

inhibitors are discussed.

KEYWORDS

matrix metalloproteinase (MMP), breast cancer, therapeutic target, tumor microenvironment,
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Introduction

Breast cancer is the most frequent malignancy and the leading cause of cancer-related

death in women worldwide (1). Based on the hormone receptor (estrogen receptor [ER] or

progesterone receptor [PR]) and human epidermal growth factor receptor 2 (HER2) status,

breast cancer is classified into four main subtypes; hormone receptor-positive/HER2-negative
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(or luminal A), hormone receptor-positive/HER2-positive (or

luminal B), hormone receptor-negative/HER2-positive (HER2-

positive or HER2-enriched), and triple-negative breast cancer

(TNBC), and the choice of systemic treatment depend on the

cancer subtypes (2, 3). In recent decades, there has been remarkable

progress in the development of novel molecular targeted therapies

(i.e., cyclin-dependent kinase 4 and 6 inhibitors, poly (ADP-ribose)

polymerase inhibitors, and HER2 or trophoblast cell surface antigen-2

antibody-drug conjugates) and immunotherapies (i.e., programmed

cell death-1 [PD-1] inhibitors) for patients with breast cancer who

failed primary systemic treatment with endocrine therapy or

chemotherapy (4). Despite significant improvements in therapies, a

considerable number of patients still experience recurrence or

metastasis after initial therapy, which is responsible for the high

mortality in breast cancer (5–7).

Tumor progression and metastasis are driven by the complex

interplay between malignant tumor cells and the surrounding non-

malignant stroma, comprising the extracellular matrix (ECM),

stromal cells such as endothelial cells (ECs), fibroblasts, and

infiltrating immune cells (8, 9). Matrix metalloproteinases (MMPs)

are zinc-dependent endopeptidases that can degrade and remodel the

ECM (10). Studies have identified 23 MMPs in humans (11), and they

are generally categorized as collagenases (MMP-1 [interstitial

collagenase], -8 [neutrophil collagenase], -13 [collagenase-3], and

-18 [collagenase-4]), gelatinases (MMP-2 [72 kDa gelatinase/type

IV collagenase], and -9 [92 kDa gelatinase/type IV collagenase]),

stromelysins (MMP-3 [stromelysin-1], -10 [stromelysin-2], and -11

[stromelysin-3]), matrilysins (MMP-7 [matrilysin], and -26

[endometase or matrilysin-2]), membrane-type (MMP-14 [MT1-

MMP], -15 [MT2-MMP], -16 [MT3-MMP], -17 [MT4-MMP], -24

[MT5-MMP], and -25 [MT6-MMP]), or other miscellaneous types

based on substrate specificity or domain structure (12, 13). MMPs,

which are produced by non-malignant stromal cells as well as tumor

cells, contribute to tumor progression by regulating tumor growth,

invasion, angiogenesis, and metastasis (11, 14–16). Although MMPs

were initially thought to promote tumor progression by remodeling

the ECM through their proteolytic activity, accumulating evidence

has provided a novel understanding of the roles and mechanisms of

MMPs in cancer. Some MMPs, such as MMP-3 and -8, exhibit

protective roles in cancer, and the same MMP can be pro-

tumorigenic or anti-tumorigenic depending on the cell type in

which it is expressed or the stage of cancer (12, 17, 18). Moreover,

MMPs produced from non-malignant cells within the tumor

microenvironment (TME) play crucial roles in cancer progression

and metastasis. Stromal MMPs, such as MMP-9 and -12, particularly

those produced by infiltrating inflammatory cells, have been shown to

play anti-tumorigenic roles (17), highlighting the need for further

studies on cell type-specific roles of MMPs. MMPs also contribute to

tumor progression through their non-catalytic functions (14, 15).

Accumulating evidence supports the involvement of MMPs in

additional biological processes, such as cell signaling and immune

regulation, independent of proteolytic activity (11, 15). In particular,

some MMPs, such as MMP-2 and -9, have been demonstrated to

influence cancer progression by modulating immune responses in the

TME (19, 20). In addition, their biological roles are mediated by non-

ECM substrates such as cell surface receptors, growth factors,

cytokines, chemokines, and nuclear proteins, as well as ECM
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substrates. For example, MMP-1 derived from fibroblasts was found

to promote the growth and invasion of breast cancer cells by

activating protease-activated receptor 1 (PAR1) (21). Macrophage-

derived MMP-12 inactivates Glu-Leu-Arg (ELR)1 CXC chemokines,

which are involved in neutrophil recruitment to sites of injury or

inflammation, and generates C-C chemokine receptor (CCR)

antagonists by inactivating monocyte chemotactic proteins,

indicating the role of MMP in the regulation of inflammatory

response by proteolysis of chemokines (22). While most MMPs are

secreted proteases and are recognized to have extracellular activity,

recent findings revealed that some MMPs, including MMP-1, -2, -3,

-7, -8, -9, -10, -11, -12, -14, -23, and -26, have intracellular functions,

suggesting that intracellular and extracellular MMPs are likely to play

roles in cancer progression (23).

A subset of MMPs is frequently overexpressed in breast cancer

and is associated with prognosis; thus, they have been considered

promising therapeutic targets for breast cancer (10, 24, 25). However,

while there is a MMP inhibitor approved by the U.S. Food and Drug

Administration for treating periodontitis, no MMP inhibitor has been

approved for the treatment of cancer (26–28). This may be partly

attributable to the lack of understanding of the cell type-specific roles

of individual MMP in breast cancer. In this review, the current

understanding of the roles of tumoral and stromal MMPs in breast

cancer progression is summarized, and recent efforts or advances in

the development of highly selective MMP inhibitors are discussed.
Prognostic values of MMPs in
breast cancer

In breast cancer, several MMPs are expressed in various cell types

comprising the TME, such as fibroblasts, immune cells, and tumor

cells, and their expression at the gene or protein level has been

reported to be significantly associated with the prognosis of breast

cancer patients (Table 1).
Prognostic significance of MMP
gene expression

Analyses of publicly available gene expression databases or

datasets revealed that high expression of MMP-1, -7, -9, -11, -12,

-14, and -15 was significantly associated with decreased patient

survival (29, 31, 45). In contrast, high MMP-2, -8, and -26 gene

expressions were found to be correlated with a favorable prognosis

(31). Quantitative real-time reverse transcription-PCR (qRT-PCR)

analyses further confirmed that upregulated MMP-14 transcript levels

correlate with shorter metastasis-free survival in breast cancer (58)

and that high MMP-11 mRNA levels independently predict the

increased risk of distant metastasis in breast cancer, especially in

HER2-positive breast cancer (53). Moreover, based on the prognostic

significance of their gene expression, some MMPs are included in the

prognostic gene signatures of commercial multigene assays for

predicting the risk of recurrence in early breast cancer. Seventy

gene signatures used to develop MammaPrint (Agendia Inc., Irvine,

CA, USA) contain MMP9 as a prognostic gene (61). MMP11 is

included in the 21-prognostic gene panel of the Oncotype DX assay
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TABLE 1 Prognostic significance of MMPs in breast cancer.

MMP Gene or protein
level

Samples
(method)

Association of stromal or tumoral MMP expression with
clinical outcomes

References

MMP-1 (Interstitial
collagenase)

Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter OS) (29)

Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter brain metastasis-free survival) (30)

Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter recurrence-free survival) (31)

Protein Tissue (IHC) Positive (fibroblasts) ! poor prognosis (shorter relapse-free survival) (32)

Protein Tissue (IHC) High (tumor cells) ! poor prognosis (shorter breast cancer-specific
survival)

(33)

Protein Tissue (IHC) High ! poor prognosis (shorter disease-free survival) in TNBC (34)

Protein Serum (ELISA) Low ! poor prognosis (35)

MMP-2 (72 kDa
gelatinase/type IV
collagenase)

Gene expression Tissue (Public
database analysis)

High ! favorable prognosis (longer recurrence-free survival) (31)

Protein Tissue (IHC) Positive (tumor cells) ! poor prognosis (shorter recurrence-free
survival or OS)

(36)

Protein Tissue (IHC) High (tumor cells) ! poor prognosis (shorter relapse-free survival) (37)

Protein Tissue (IHC) No significant association of tumoral or stromal MMP2 expression with
relapse-free survival

(32)

Protein Tissue (IHC) No significant association of tumor-derived MMP2 expression with OS (38)

Protein Tissue (IHC) High (tumor cells) ! high risk of bone metastasis of breast cancer (39)

Protein Tissue (IHC) No significant association of tumoral MMP2 with OS
MMP2 (stromal cells) ! poor prognosis (shorter OS)

(40)

Protein (Systemic
review and meta-
analysis)

Tissue (IHC) High (tumor cells) ! poor prognosis (shorter OS) (41)

Protein Serum (ELISA) High ! poor prognosis (shorter disease-free survival and OS) (42)

Protein Serum (ELISA) High ! poor prognosis (shorter disease-free survival) (43)

MMP-7 (Matrilysin) Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter recurrence-free survival) (31)

Protein Tissue (IHC) Positive (fibroblasts) ! poor prognosis (shorter relapse-free survival)
Positive (MICs) ! poor prognosis (shorter relapse-free survival)

(32)

MMP-8 (Neutrophil
collagenase)

Gene expression Tissue (Public
database analysis)

High ! favorable prognosis (longer recurrence-free survival) (31)

Gene expression Tissue (qRT-
PCR)

Positive (tumor cells) ! favorable prognosis (longer relapse-free survival) (44)

MMP-9 (92 KDa
gelatinase/type IV
collagenase)

Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter OS) (29)

Gene expression Tissue (Database
analysis)

High ! poor prognosis (shorter disease-specific survival) (45)

Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter recurrence-free survival) (31)

Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter brain metastasis-free survival) (46)

Protein Tissue (IHC) High (tumor cells) ! favorable prognosis (longer recurrence-free survival)
Positive (stromal cells) ! poor prognosis (shorter recurrence-free survival
and breast cancer-related survival) in ER-positive breast cancer

(47)

Protein Tissue (IHC) High (tumor cells) ! poor prognosis (shorter relapse-free survival) (37)

Protein Tissue (IHC) (48)

(Continued)
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TABLE 1 Continued

MMP Gene or protein
level

Samples
(method)

Association of stromal or tumoral MMP expression with
clinical outcomes

References

Positive (stromal cells) ! poor prognosis (shorter relapse-free survival
and OS)

Protein Tissue (IHC) Positive (tumor cells) ! poor prognosis (shorter relapse-free survival)
Positive (fibroblasts) ! poor prognosis (shorter relapse -free survival)
Positive (MICs) ! poor prognosis (shorter relapse-free survival)

(32)

Protein Tissue (IHC) Positive (fibroblasts) ! poor prognosis (shorter relapse-free survival) in
luminal A breast cancer
Positive (MICs) ! poor prognosis (shorter relapse-free survival) in HER2-
positive breast cancer

(49)

Protein Tissue (IHC) Positive (tumor cells) ! poor prognosis (shorter breast cancer-specific
survival)

(50)

Protein (Systemic
review and meta-
analysis)

Tissue (IHC) High (tumor cells) ! poor prognosis (shorter OS) (41)

Serum Serum (ELISA) High ! poor prognosis (shorter relapse-free survival and OS) (51)

MMP-11 (Stromelysin-3) Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter disease-specific survival) (45)

Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter disease-free survival and disease-specific
survival)

(52)

Gene expression Tissue (qRT-
PCR)

High ! poor prognosis (shorter distant metastasis-free survival) (53)

Protein Tissue (IHC) Positive (fibroblasts) ! poor prognosis (shorter relapse-free survival)
Positive (MICs) ! poor prognosis (shorter relapse-free survival)

(32)

Protein Tissue (IHC) Positive (tumor cells) ! poor prognosis (shorter OS, but not disease-free
survival)
Positive (stromal fibroblast-like cells) ! poor prognosis (shorter disease-free
survival and OS)

(54)

Protein Tissue (IHC) High (endothelial cells) ! poor prognosis (shorter relapse-free survival and
OS)

(55)

Protein Tissue (IHC) Positive (MICs) ! poor prognosis (shorter relapse-free survival) in all
subtypes of breast cancer
Positive (fibroblasts) ! poor prognosis (shorter relapse-free survival) in
luminal A breast cancer

(49)

Protein Tissue (IHC) No significant association of tumoral MMP-11 expression with prognosis
Positive (fibroblasts) ! poor prognosis (shorter relapse-free survival and
OS)
Positive (MICs) ! poor prognosis (shorter relapse-free survival and OS)

(56)

Protein Tissue (IHC) High (tumor cells) ! poor prognosis (shorter disease-free survival and
disease-specific survival)

(52)

Protein Tissue (IHC) No significant association of tumoral MMP-11 expression with prognosis
No significant association of MMP-11 expression in fibroblasts with
prognosis
Positive (MICs) ! poor prognosis (shorter distant metastasis-free survival,
disease-free survival, and OS)

(57)

MMP-12 (Macrophage
metalloelastase)

Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter OS) (29)

Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter recurrence-free survival and OS) (31)

MMP-13 (Collagenase-3) Protein Tissue (IHC) Positive (fibroblasts) ! poor prognosis (shorter relapse-free survival)
Positive (MICs) ! poor prognosis (shorter relapse-free survival)

(32)

Protein Tissue (IHC) High (tumor cells) ! shorter OS
No significant association of stromal fibroblast-derived MMP-13 expression
with prognosis

(38)

(Continued)
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(Genomic Health Inc., Redwood City, CA, USA) (62) and 50 genes

were used to calculate the risk or recurrence score of the Prosigna

PAM50 assay (Veracyte, South San Francisco, CA, USA; formerly:

NanoString Technologies, Seattle, WA, USA) (63, 64).
Prognostic significance of tumoral or
stromal MMP protein expression

Numerous immunochemical studies have validated the

prognostic significance of the tumoral or stromal MMP expression

in breast cancer. Several studies have shown a significant association

between stromal MMP-11 or -14 expression and poor prognosis in

breast cancer. In particular, MMP-11 expression in mononuclear

inflammatory cells (MICs) has been consistently demonstrated to be a

strong predictor of decreased survival in patients with breast cancer

(49, 56, 57), whereas there have been conflicting reports on the

prognostic value of MMP-11 expression in cancer cells or cancer-

associated fibroblasts (CAFs) (52, 54, 56, 57). MMP-11 was also found

to be expressed in ECs from breast cancer samples, and MMP-11

expression in ECs was significantly correlated with shorter relapse-

free and overall survival (OS) (55). MMP-14 expression in MICs is

also a negative prognostic factor for relapse-free survival in breast

cancer (32, 49, 59).

In cases of MMP-1, -2, -9, and -13, conflicting results on the

prognostic values of their tumoral or stromal expression have been

reported. While one study showed the prognostic significance of
Frontiers in Oncology 05
fibroblastic MMP-1 expression (32), another study reported that

stromal MMP-1 expression is not significant and that high MMP-1

expression in tumor cells is an independent negative prognostic factor

for breast cancer-specific survival (33). Some studies have shown that

tumoral MMP-2 expression is significantly associated with shorter

survival in patients with breast cancer (36, 37). In particular, high

tumoral MMP-2 expression was significantly correlated with an

increased risk of bone metastasis in breast cancer (39). A recent

systematic review and meta-analysis also confirmed that tumoral

MMP-2 overexpression is associated with shorter OS and a higher

risk of distant metastasis, suggesting that tumoral MMP-2 expression

is a promising negative prognostic factor (41). However, several

studies have reported no relationship between MMP-2 protein

expression and patient survival (32, 38). In addition, Min et al.

reported that stromal MMP-2 expression is an independent factor

indicating poor prognosis, whereas tumoral MMP-2 alone has no

prognostic value (40). As for MMP-9, several studies have

demonstrated that its positive or high expression in tumor cells or

stromal cells is a negative prognostic factor for breast cancer (32, 37,

48, 50, 65). A recent study revealed that high MMP-9 expression in

tumor cells is significantly associated with poor breast cancer-specific

survival and is an independent negative prognostic factor, whereas

stromal MMP-9 expression exhibited similar trends but is marginally

significant, highlighting that tumoral MMP-9 expression is a more

significant predictor of patient survival (50). A recent systematic

review and meta-analysis also demonstrated that tumoral MMP-9

overexpression correlates with lymph node metastasis and predicts
TABLE 1 Continued

MMP Gene or protein
level

Samples
(method)

Association of stromal or tumoral MMP expression with
clinical outcomes

References

MMP-14 (MT1-MMP) Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter OS) (29)

Gene expression Tissue (qRT-
PCR)

High ! poor prognosis (shorter metastasis-free survival) (58)

Protein Tissue (IHC) Positive (MICs) ! poor prognosis (shorter relapse-free survival) (32)

Protein Tissue (IHC) No significant association of tumoral MMP-14 expression with prognosis
No significant association of MMP-14 expression in fibroblasts with
prognosis
Positive (MICs) ! poor prognosis (shorter relapse-free survival)

(59)

Protein Tissue (IHC) Positive (MICs) ! poor prognosis (shorter relapse-free survival) in luminal
B breast cancer

(49)

MMP-15 (MT2-MMP) Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter OS) (29)

Gene expression Tissue (Database
analysis)

High ! poor prognosis (shorter disease-specific survival) (45)

Gene expression Tissue (Public
database analysis)

High ! poor prognosis (shorter recurrence-free survival and OS) (31)

MMP-26 (Endometase or
matrilysin-2)

Gene expression Tissue (Public
database analysis)

High ! favorable prognosis (longer recurrence-free survival) (31)

Protein Tissue (IHC) High ! favorable prognosis (longer disease-free survival and OS) (60)

ELISA, enzyme-linked immunosorbent assay; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; MICs, mononuclear inflammatory cells; OS,
overall survival; qRT-PCR, quantitative real-time reverse transcription-PCR.
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shorter OS in breast cancer patients (41). In contrast, one study

reported that low protein expression of MMP-9 in cancer cells is an

independent predictor of shorter recurrence-free survival in patients

with breast cancer, indicating that high tumoral MMP-9 expression is

a favorable prognostic factor, while stromal MMP-9 expression

predicts shorter recurrence-free survival in ER-positive breast

cancer (47). Conflicting results regarding the prognostic significance

of MMP-13 have also been reported. One study showed a significant

association between stromal MMP-13 expression and poor prognosis

(32) but another study showed that tumoral MMP-13, not stromal

fibroblast-derived MMP-13, correlated with aggressive tumor

phenotypes and was an independent negative prognostic factor for

OS in breast cancer (38). Further validation of the prognostic value of

stromal or tumoral MMP-1, -2, -9, and -13 expression in breast

cancer is required.

Consistent with the gene expression data analysis, positive

MMP-8 (44) and high MMP-26 protein expression (60) in breast

tumor tissues correlated with longer patient survival, indicating that

they are favorable prognostic factors in breast cancer.
Serum MMP levels as prognostic factors

It is notable that serum levels of some MMPs, such as MMP-1, -2,

and -9, are associated with prognosis in breast cancer. Serum MMP-9

levels were significantly upregulated in breast cancer patients

compared to normal controls and high serum MMP-9 levels were

significantly associated with poor prognostic factors, such as higher

tumor size and lymph node metastasis, and lower relapse-free survival

and OS rates (51). Postoperative high serum MMP-2 levels remain an

independent predictor of poor prognosis in node-positive breast

cancer, whereas serum MMP-9 levels do not correlate with patient

survival (42). Similarly, another study showed that high preoperative

serum levels of MMP-2 were associated with shorter disease-free

survival in patients with breast cancer in ER-negative, higher

histologic grade, or higher nuclear grade breast cancers (43). In

contrast, serum MMP-1 levels were significantly lower in patients

with breast cancer than in healthy controls, and low serum MMP-1

levels were associated with shorter survival (35). These results suggest

that circulating MMP can also be used as a prognostic factor for breast

cancer. However, further validation of the clinical utility of circulating

MMP levels is warranted.
The roles of tumoral or stromal MMPs
in breast cancer

The role of MMPs in breast cancer progression has been

investigated based on their overexpression and prognostic

significance. Some MMPs have been shown to promote tumor

growth through the regulation of cell proliferation, apoptosis,

angiogenesis, or metastasis, while some MMPs have been found to

exert both pro-tumorigenic and anti-tumorigenic roles depending on

the cell types in which they are expressed or the stages of the disease

(Table 2, Figure 1). Furthermore, a few MMPs have exhibited anti-

tumorigenic functions in breast cancer (Table 2, Figure 1).
Frontiers in Oncology 06
Pro-tumorigenic MMPs

Consistent with the significant association of their high

expression in tumor cells or stromal cells with poor clinical

outcomes, MMP-1, -2, -7, -13, and -14 exhibited pro-tumorigenic

functions in breast cancer.

Breast cancer is the second most common cancer that

metastasizes to the brain after lung cancer, and among the breast

cancer subtypes, TNBC and HER2-positive breast cancer have a

higher risk of brain metastasis than other subtypes (96, 97). MMP-

1 has been shown to play a role in breast cancer brain metastasis.

Knockdown of MMP-1 expression in TNBC cells significantly

inhibited breast cancer growth and brain metastasis in a xenograft

model, indicating that tumoral MMP-1 promotes tumor growth and

formation of brain metastasis in TNBC (66). Similarly, another study

analyzing the clinical significance of MMPs in brain metastasis-free

survival of breast cancer using a public gene expression database

found that high MMP-1 gene expression is positively correlated with

brain metastasis of breast cancer, and it also demonstrated that

knockdown of MMP-1 expression in TNBC cells significantly

blocked brain metastasis of breast cancer in vivo (30). This study

further revealed that MMP-1 is highly expressed in brain metastatic

breast cancer cells and can degrade key components of the blood-

brain barrier, suggesting that MMP-1 secreted from brain metastatic

breast cancer cells enhances brain metastasis by increasing the

permeability of the blood-brain barrier. Decreased MMP-1

expression in luminal A (MCF-7) and TNBC (MDA-MB-231) cells

also significantly inhibited cell proliferation, migration, and invasion

in vitro (67). A recent study revealed that exosomal MMP-1 secreted

from TNBC cells increased their migration and invasion and further

enhanced their metastatic potential in vivo (34). These results provide

evidence that MMP-1 secreted from tumor cells has a tumor-

promoting role in breast cancer; in particular, it promotes brain

metastasis in TNBC. MMP-1 was also reported to be involved in

tamoxifen resistance in breast cancer. Downregulation of MMP1 in

tamoxifen-resistant breast cancer cells induced tamoxifen sensitivity

in vitro and retarded tumor growth in vivo (98).

The tumor-promoting functions of tumoral and stromal MMP-2

have also been demonstrated. Tumoral MMP-2 enhanced tumor

growth and metastasis in an orthotopic mouse model of breast

cancer (68, 69). Notably, similar to MMP-1, these studies showed

that tumoral MMP-2 promotes breast cancer metastasis to the brain.

Moreover, high MMP-2 expression in tumor cells was correlated with

an increased risk of bone metastasis in breast cancer patients, and

MMP-2 overexpression promoted the migration and invasion of

breast cancer cells (39). Another in vitro study showed that PAR2-

induced MMP-2 expression promotes the migration of human breast

cancer cells through the p38 MAPK/MK2/HSP27 axis (70). On the

other hand, host-derived MMP-2, which is mainly produced from

stromal fibroblasts, was also shown to promote the outgrowth of

mammary tumors in the lungs in vivo (71). These results suggest that

both tumoral and stromal MMP-2 are involved in the promotion of

breast cancer progression.

MMPs can activate other MMPs by converting their inactive form

to active form (12). MMP-7 activates gelatinases, including MMP-2

and -9, thereby enhancing their proteolytic activity (99). MMTV-Neu
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TABLE 2 The roles of tumoral or stromal MMPs in breast cancer.

MMP Roles Functions References

MMP-1 (Interstitial
collagenase)

Tumoral MMP-1 ! Pro-tumorigenic Promote tumor growth and brain/lung metastasis (in vivo) (66)

Tumoral MMP-1 ! Pro-tumorigenic Promote brain metastasis (in vivo) (30)

Tumoral MMP-1! Pro-tumorigenic Promote the proliferation, migration and invasion of breast
cancer cells (in vitro)

(67)

Tumoral MMP-1! Pro-tumorigenic Promote the migration and invasion of breast cancer cells
(in vitro)
Promote lung metastasis (in vivo)

(34)

MMP-2 (72 kDa
gelatinase/type IV
collagenase)

Tumoral MMP-2 ! Pro-tumorigenic Promote the invasion of breast cancer cells (in vitro)
Promote primary tumor growth and metastasis (in vivo)

(68)

Tumoral MMP-2 ! Pro-tumorigenic Promote brain metastasis (in vivo) (69)

Tumoral MMP-2 ! Pro-tumorigenic Promote the migration and invasion of breast cancer cells
(in vitro)

(39)

Tumoral MMP-2 ! Pro-tumorigenic Promote the migration and invasion of breast cancer cells
(in vitro)

(70)

Stromal (fibroblasts) MMP-2 ! Pro-tumorigenic Promote lung metastasis outgrowth (in vivo) (71)

MMP-3 (Stromelysin-1) MMP-3 !Pro-tumorigenic Promote tumor formation (in vivo) (72)

MMP-3 ! Pro-tumorigenic Promote tumor formation (in vivo) (73)

MMP-3 ! Anti-tumorigenic Suppress tumor formation (in vivo) (74)

Stromal MMP3 ! Anti-tumorigenic Suppress primary and lung metastatic tumor growth (in vivo) (75)

MMP-7 (Matrilysin) Tumoral MMP-7 ! Pro-tumorigenic Enhance mammary gland proliferation and tumorigenesis
(tumor development) (in vivo)

(76)

Tumoral MMP-7 ! Pro-tumorigenic Promote tumor formation (in vivo) (77)

MMP-8 (Neutrophil
collagenase)

MMP-8!Anti-tumorigenic Suppress tumorigenesis (tumor onset and growth) and lung
metastasis (in vivo)

(78)

MMP-9 (92 kDa type IV
collagenase)

Tumoral MMP-9 (secreted MMP-9 from tumor cells) ! Pro-
tumorigenic

Promote tumor growth and angiogenesis (in vivo) (79)

Tumoral MMP-9 ! Pro-tumorigenic (Pro-metastatic) Promote the invasion of breast cancer cells (in vitro)
Promote lung metastasis (in vivo)

(80)

MMP-9 ! Pro-tumorigenic Promote tumor onset in C3 (1)-Tag model but no effect in
MMTV-Neu model (in vivo)

(81)

Stromal MMP-9 ! Pro-tumorigenic (Pro-metastatic) Promote lung metastasis in C57BL/6 background mice but no
effect in FVB/N background mice (in vivo)

(82)

MMP-9!Anti-tumorigenic Suppress tumor growth rate and angiogenesis (in vivo) (83)

MMP-9!Anti-tumorigenic Suppress tumor growth rate and neoangiogenesis (in vivo) (19)

MMP-11 (Stromelysin-
3)

Tumoral MMP-11 !Pro-tumorigenic Increase the survival of breast cancer cells (in vitro) (84)

Tumoral MMP-11 !Pro-tumorigenic Enhance tumorigenesis (tumor onset and growth) (in vitro
and in vivo)

(85)

Stromal MMP-11 ! Pro-tumorigenic for primary tumor
growth but anti-tumorigenic for metastasis (Anti-metastatic)

Promote tumor formation and primary tumor growth but
suppress metastasis (in vivo)

(86)

Stromal (macrophages) MMP-11 ! Pro-tumorigenic Promote the migration of breast cancer cells, recruitment of
monocyte and endothelial cell tube formation (in vitro)

(57)

MMP-12 (Macrophage
metalloelastase)

Tumoral MMP-12 ! Anti-tumorigenic Suppress angiogenesis and tumor growth (in vitro and in vivo) (87)

MMP-13 (Collagenase-3) Tumoral MMP-13 ! Pro-tumorigenic Promote bone destruction in metastatic region (metastatic
osteolytic lesions) (in vivo)

(88)

MMP-13 ! Pro-tumorigenic Promote tumor-induced osteolysis (bone destruction) (in vivo) (89)

(Continued)
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transgenic mice that express MMP-7 in the mammary epithelium

exhibited enhanced mammary gland proliferation and tumorigenicity

(76). Another study showed that MMP-7 promotes mammary

epithelial cell tumorigenesis through the receptor tyrosine-protein

kinase ErbB-4 (77), further supporting the hypothesis that MMP-7

contributes to early-stage mammary tumorigenesis.

MMP-13 is associated with breast cancer-induced osteolysis,

suggesting that MMP-13 is a promising therapeutic target for breast

cancer bone metastasis (88, 89). MMP-13 expression was found to be

upregulated in bones of a metastatic TNBC mouse model (88) or at

the tumor-bone interface from syngeneic mice injected with

mammary tumor cell lines with metastatic potential (89).

Furthermore, the knockdown of MMP-13 at the tumor-bone

interface by treatment with MMP-13 antisense oligonucleotide

significantly reduced bone destruction, indicating that MMP-13
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contributes to breast cancer-induced osteolysis (89). In addition,

co-culture of breast cancer cells and osteoblasts has revealed that

MMP-13 expression can be induced in osteoblasts by soluble factors

produced by breast cancer cell lines, suggesting the involvement of

osteoblastic MMP-13 in bone metastasis of breast cancer (100).

Upregulation of MMP-14, a membrane-anchored MMP, is

associated with an increased risk of metastasis in breast cancer (58,

90, 91). Downregulation of cancer cell-expressed MMP-14 did not

affect primary growth but inhibited lung metastasis in an orthotopic

mouse model of TNBC (90). In an intraductal xenograft model,

MMP-14 was found to be required for cancer progression from

carcinoma in situ to the invasive stage in basal-like breast cancer

(58). Feinberg et al. demonstrated that tumor cell-derived MMP-14,

but not stromal MMP-14, promotes local invasion and metastasis in

vivo, supporting the pro-metastatic role of tumoral MMP-14 in breast
TABLE 2 Continued

MMP Roles Functions References

MMP-14 (MT1-MMP) Tumoral MMP-14 ! Pro-tumorigenic (Pro-metastatic) Promote the invasion of breast cancer cells (in vitro)
Promote lung metastasis (in vivo)

(90)

Tumoral MMP-14 ! Pro-tumorigenic Promote invasion (in vivo) (58)

Tumoral MMP-14 ! Pro-tumorigenic Promote local invasion and metastasis (in vivo) (91)

Tumoral MMP-14 ! Pro-tumorigenic Promote the characteristics of tumor-initiating cells and
tumorigenicity (tumor onset and growth) (in vitro and
in vivo)

(92)

Stromal MMP-14 ! Anti-tumorigenic for primary tumor
growth but pro-tumorigenic for metastasis (Pro-metastatic)

Suppress primary tumor growth but promote lung metastasis
(in vivo)

(93)

Stromal MMP-14 ! Pro-tumorigenic Promote the migration of breast cancer cells (in vitro) (94)

Stromal (endothelial cells) MMP-14 ! Pro-tumorigenic Promote the adhesion of extracellular matrix and endothelial
cell tube formation (in vitro)

(95)
FIGURE 1

Roles of MMPs in breast cancer development and progression. MMPs are expressed in various cell types including tumor cells and neighboring stromal
cells, such as fibroblasts, immune cells, and endothelial cells comprising the tumor microenvironment. Tumoral or stromal MMPs play roles in multiple
stages of breast cancer progression including primary tumor growth, angiogenesis, invasion, and metastasis. MMPs can exert pro-tumorigenic or anti-
tumorigenic functions in breast cancer and the same MMP can exhibit opposing roles depending on stage of cancer progression.
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cancer (91). The effect of MMP-14 on tumor initiation has also been

reported. Reduced MMP-14 expression in tumor-initiating cells from

a breast cancer mouse model decreased the characteristics of tumor-

initiating cells, delayed tumor onset, and decreased tumor volume,

indicating that tumoral MMP-14 promotes tumorigenicity in vitro

and in vivo (92). In contrast, other studies have reported that stromal

MMP-14 plays a role in breast cancer. MMP-14 was expressed mainly

in the stroma of PyMT-induced tumors, and MMP-14-deficient

MMTV-PyMT tumors displayed remarkably reduced lung

metastasis compared to wild-type tumors, indicating that stromal

MMP-14 is required for lung metastasis in breast cancer (93).

Notably, this study revealed faster tumor growth in MMP-14-

deficient tumors than in wild-type tumors, indicating an inhibitory

role of MMP-14 in primary tumor growth. These results suggested the

opposing role of stromal MMP-14 depending on the stage of breast

cancer progression. Soluble MMP-14 derived from bone marrow-

derived stromal cells promoted the migration of luminal A breast

cancer cells by inducing endoglin (transforming growth factor-b
[TGF-b] auxiliary receptor) shedding on the breast cancer cell

surface, suggesting a pro-tumorigenic role of stromal MMP-14 (94).

In particular, MMP-14 plays a crucial role in vessel maturation and

angiogenesis associated with cancer progression (101, 102). Selective

inhibition of MMP-14 using an anti-MMP-14 antibody impaired the

migration, invasion, and tube formation of ECs in vitro, in part by

blocking MMP-2 activation in ECs (103). MMP-14 in ECs regulated

angiogenesis-related functions through the modulation of MMP-2

expression and activity, indicating a role of MMP-14 produced by

ECs in angiogenesis (95). Similarly, a recent study demonstrated that

loss of EC-derived MMP-14 inhibits melanoma growth and

metastasis by regulating tumor vessel stability (104). These results

show that both stromal and tumoral MMP-14 may contribute to

tumor progression in breast cancer. However, the roles and functions

of stromal MMP-14 in breast cancer remain unclear, and further

studies are required to elucidate them.
MMPs with dual or opposing roles

Some MMPs, such as MMP-3, -9, and-11, have exhibited dual

roles or conflicting data on their roles in breast cancer progression.

Conflicting data regarding the role of MMP-3 in breast cancer have

been reported. In some studies, MMP-3 has been reported to

stimulate spontaneous tumor formation in the mammary glands of

transgenic mice (72, 73), suggesting its tumor-promoting role in

breast cancer. In contrast, another study showed that tumor

formation was decreased in MMP-3-expressing transgenic mice

(74). Moreover, in another study, loss of stromal MMP-3 was

found to increase the tumor burden, suggesting that stromal MMP-

3 plays a protective role during breast cancer development by

inhibiting tumor growth (75).

MMP-9 has also been shown to exert both pro- and anti-

tumorigenic roles in breast cancer. Some studies have demonstrated

the pro-tumorigenic or pro-metastatic activity of MMP-9 in vivo, but

its effect varied with different mouse models of breast cancer. An early

study using xenograft models of luminal A MCF-7 breast cancer cells

showed that secreted MMP-9 promotes tumor growth and

angiogenesis (79). In another study using genetically engineered
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breast cancer mouse models, MMP-9 knockout delayed tumor

onset in the basal-like TNBC (C3(1)-Tag) model but had no effect

on tumorigenesis in the luminal MMTV-Neu model (81). This

difference was related to the protein expression levels of insulin-like

growth factor-binding protein-1 (IGFBP-1), which is a MMP-9

substrate. While MMTV-Neu tumors had low levels of IGFBP-1

independent of MMP-9 status, IGFBP1-1 expression was increased in

the MMP-9 knockout C3(1)-Tag model compared to the MMP-9

wild-type C3(1)-Tag model, suggesting that the tumor-promoting

effect of MMP-9 is dependent on the status of its substrate, IGFBP-1.

Tumor cell-produced MMP-9 was shown to promote metastasis in an

orthotopic mouse model of basal-like TNBC (80). On the other hand,

stromal MMP-9 was also shown to play a role in breast cancer, but the

effect of stromal MMP-9 was dependent on the genetic background of

the mouse stain. Inhibition of MMP-9 produced predominantly by

inflammatory cells in the MMTV-PyVT mouse mammary tumor

model reduced lung metastasis without affecting primary tumor

growth; however, this effect was only observed in mice with a

genetic background derived from C57BL/6, suggesting that the pro-

metastatic role of host-derived stromal MMP-9 is dependent on

genetic background (82). Taken together, these results illustrate that

tumor cell-produced or stromal cell-derived MMP-9 can exert pro-

tumorigenic or pro-metastatic roles in breast cancer under

certain circumstances.

Studies have also demonstrated the anti-tumorigenic activity of

MMP-9 in breast cancer. Adenoviral gene transfer of MMP-9 in

MCF-7 tumors in nude mice significantly reduced tumor growth and

microvessel area, with increased levels of anti-angiogenic endostatin,

indicating that MMP-9 can inhibit angiogenesis by the generation of

anti-angiogenic factors (83). Another study also reported decreased

tumor growth and angiogenesis by adenoviral gene transfer of MMP-

9 in mouse models of human breast cancer (luminal MCF-7 tumors in

nude mice and MMTV-PyMT tumors) (19). In particular, this study

showed that MMP-9 promotes an anti-tumor immune response by

inducing neutrophil infiltration and activating tumor-infiltrating

macrophages, suggesting that the anti-tumor activity of MMP-9 is

mediated by its modulation of the innate immune response.

MMP-11 has a dual role in breast cancer, depending on the stage

of cancer. In a study using a MMTV-Ras transgenic mouse model of

breast cancer, tumor formation was delayed and the number and

tumor size of the primary tumor were lower, but a higher number of

metastases were observed in MMP-11-deficient mice than in wild-

type mice, indicating that MMP-11 promotes tumorigenesis in the

early stages of breast cancer but inhibits the metastasis of tumor cells

in the late stage of breast cancer (86). This study revealed that MMP-

11 in the TME has different functions in breast cancer progression.

Other studies have shown the tumor-promoting effects of tumoral

MMP-11 in breast cancer. MMP-11 overexpression increased the

survival of MCF-7 cells (84) and enhanced tumorigenicity in vitro

(MCF-7 and MDA-MB-231 cells) and in vivo (85). However, despite

the obvious association of MMP-11 expression in MICs with poor

clinical outcomes in patients with breast cancer, the role and

molecular mechanisms of stromal MMP-11 in breast cancer remain

unclear. Our recent study revealed for the first time that MMP-11

produced by macrophages enhanced the migration of HER2-positive

breast cancer cells and recruitment of monocytes through C–C motif

chemokine ligand 2 (CCL2)−CCR2 signaling, whereas MMP-11
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overexpression in tumor cells did not promote the proliferation or

migration of breast cancer cells (57). These results showed that

stromal MMP-11 may play a tumor-promoting role in HER2-

positive breast cancer by interacting with breast cancer cells and

other stromal cells. Importantly, some studies have reported a

correlation between MMP gene expression and infiltration of

various immune cells in breast cancer, suggesting the involvement

of MMPs in the regulation of the TME or immune response (31, 52).

In particular, Kim et al. (52) showed that high MMP-11 gene

expression is significantly associated with low levels of immune

cells, including CD8+ T cells, CD4+ T cells, and B cells, and is

related to low immune response. Furthermore, this study

demonstrated the correlation of high MMP-11 expression with low

infiltrating CD8+ or CD4+ T cells using immunohistochemical

analysis, suggesting that the reduced anti-tumor immune response

by MMP-11 contributes to the promotion of breast cancer

progression. However, the mechanistic roles of MMP-11 in the

regulation of the immune response in the TME are unclear, and

further studies are required to elucidate the immune response-related

role of MMP-11 in breast cancer progression.
Anti-tumorigenic MMPs

It is now evident that some MMPs, such as MMP-8, -12, -19, and

-26 have protective roles in cancer progression (12, 105). In breast

cancer, MMP-8 and -12 have exhibited anti-tumorigenic effects in

vivo. Loss of MMP-8 in the MMTV-PyMT transgenic mouse model

of human luminal breast cancer promoted tumor onset, growth, and

lung metastasis (78), illustrating the suppressive roles of MMP-8 in

tumor progression and metastasis in breast cancer. Tumor-derived

MMP-12 inhibited angiogenesis in vitro and in vivo in breast

cancer (87).
The roles of tissue inhibitors of MMPs
in breast cancer

The proteolytic function of MMPs is regulated by tissue inhibitors

of MMPs (TIMPs) (106). The four mammalian TIMPs (TIMP-1, -2,

-3, and -4) are endogenous secreted proteins to inhibit MMPs (107).

Each of the TIMPs inhibits specific MMPs, and some MMPs such as

MMP-2 and -9 interact with several TIMPs (108). Alterations in the

expression of TIMPs have been identified in human cancers and their

expression correlates with clinical outcome (107, 108). Given their

anti-proteolytic function in ECM, TIMPs were initially thought to

play protective roles in cancer progression (108). However, TIMPs

have been found to be associated with poor prognosis and exert

tumor-promoting functions in some human cancers (107, 108). In

addition to interaction with MMPs, TIMPs can bind to other

interaction partners such as cell surface receptors, and they have

multiple biological functions including cell proliferation, apoptosis,

migration, invasion and angiogenesis by MMP-dependent or

-independent mechanisms (106, 107, 109).

In breast cancer, TIMP-1 expression in primary tumor tissues is

an independent poor prognostic factor (32, 110). Moreover, studies
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have demonstrated that breast cancer patients with high levels of

serum TIMP-1 have a significantly shorter survival (51, 111).

Consistent with its prognostic significance, TIMP-1 overexpression

was shown to promote MDA-MB-231 tumor growth in SCID mice

(112). TIMP-1/CD63 signaling enhanced cell motility through the

induction of epithelial−mesenchymal transition phenotypes in

human breast epithelial cells (113). TIMP-1 knockdown in TNBC

cells induced cell cycle arrest, and Akt signaling pathway was

associated with the regulation of cyclin D1 expression by TIMP-1,

indicating that TIMP-1 increases TNBC cell proliferation by Akt

activation (114). This study further showed that blocking TIMP-1

activity using neutralizing antibody inhibits TNBC cell growth in vivo.

CAF-derived TIMP-1 was involved in the migration and growth of

breast cancer cells though TIMP-1/CD63/ITGB1/STAT3 feedback

loop (115). Regarding the prognostic value and role of TIMP-2 and -3

in breast cancer, conflicting results have been reported. High tissue

expression levels of TIMP-2 were significantly associated with

favorable clinical outcome (116). Several studies have demonstrated

tumor suppressive role of TIMP-2 in breast cancer. TIMP-2

adenoviral delivery inhibited tumor growth, angiogenesis and

metastasis in MDA-MB-231 breast tumor xenografts (117). In

another study, TIMP-2 overexpression delayed growth and

angiogenesis of mammary carcinoma in vivo in association with

downregulation of vascular endothelial growth factor (VEGF)

expression, indicating that reduced VEGF expression plays a role in

anti-tumorigenic effects of TIMP-2 (118). A recent study also revealed

inhibitory effects of TIMP-2 on tumor growth and metastasis in

murine model of TNBC (119). Conversely, the correlation of high

TIMP-2 levels with poor prognosis in breast cancer has also been

reported (32, 120, 121). Tumor cell-derived TIMP-2 was shown to

induce endothelial dysfunction and promote transmigration of breast

cancer cells across vascular endothelial monolayers through the

activation of endothelial MMP-2 in the presence of active MMP-14,

suggesting the role of TIMP-2/MMP-14/MMP-2 pathway during

metastasis (122). As for TIMP-3, stromal TIMP-3 expression is a

poor prognostic factor in breast cancer (32), while high TIMP-3

mRNA levels are associated with favorable prognosis (123). TIMP-3

overexpression inhibited cell growth and induced apoptosis in breast

cancer cells in vitro (124). In contrast, Timp3 loss suppressed

tumorigenesis in mouse models of human breast cancer, suggesting

the tumor-promoting role of TIMP-3 in vivo (125–127). TIMP-4

expression correlated with poor clinical outcome in early breast

cancer (126). Treatment with recombinant TIMP-4 significantly

stimulated the growth of MDA-MB-231 cells (127). Further studies

to elucidate the mechanistic roles and functions of TIMPs in breast

cancer are warranted.
Therapeutic targeting of MMPs in
breast cancer

Several MMP inhibitors have been developed and tested for

various cancers based on their prognostic significance and

promising preclinical data (16, 27). Early clinical trials with broad-

spectrum MMP inhibitors (such as batimastat and marimastat) were

unsuccessful because of poor bioavailability, lack of survival benefits,
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and toxicity (16, 27). The main reasons for these failures have been

attributed, in part, to a poor understanding of the roles of MMPs, lack

of drug specificity, and inappropriate clinical trial design (11, 12, 16).

As some MMPs have protective roles in cancer progression, the

negative results of early clinical trials with broad-spectrum of MMP

inhibitors were thought to be related to the effects of broad-spectrum

MMP inhibitors on anti-tumorigenic MMPs (12, 16). Given that

MMP inhibitors are likely to be effective in the early or pre-metastatic

stages based on their preclinical data, the design of previous clinical

trials of MMP inhibitors tested in patients with advanced or

metastatic cancer may be inappropriate (16). Moreover, MMP

inhibitor-related toxicities such as musculoskeletal toxicity are

assumed to be related to the poor specificity of MMP inhibitors

(11, 16). Therefore, substantial efforts have been made to develop

more specific MMP inhibitors. However, clinical trials for small

molecule-based specific MMP inhibitors (such as tanomastat,

prinomastat, and rebimastat), which still target multiple MMPs,

have also been halted or canceled owing to negative results (16).

Since then, attempts have been made to develop highly specific MMP

inhibitors that target a single MMP using novel approaches. In a

phase III trial of the broad-spectrum MMP inhibitor marimastat in

metastatic breast cancer, marimastat did not prolong progression-free

survival (128). Phase II small pilot trials of adjuvant marimastat and

rebimastat in early-stage breast cancer were performed; however,

further clinical trials with these MMP inhibitors in adjuvant settings

were not feasible due to failure of chronic administration to reach the

target ranges of plasma concentrations and toxicity (129, 130).

Several novel approaches have been attempted for the

development of highly selective MMP inhibitors. The non-catalytic

domains of MMPs have been targeted. MMPs are composed of

various domains, including a signal peptide, propeptide, catalytic

domain that binds a Zn residue, and hemopexin (PEX) C-terminal

domain, while the domain architecture differs depending on the type

of MMP (11, 24). As active sites in the catalytic domain of MMPs are

highly conserved (11, 12, 24), MMP inhibitors that target the catalytic

domains have the potential to repress multiple MMPs rather than

specific MMPs. In contrast, the non-catalytic domains of MMPs, such

as the PEX domain, vary between MMPs, and targeting these domains

is likely to improve the specificity of MMP inhibitors. In addition,

MMPs have been shown to play roles in cancer progression and

metastasis through their non-catalytic functions, independent of their

proteolytic activity (14, 15). Therefore, targeting the non-catalytic

domain of MMPs is a promising approach to develop specific MMP

inhibitors. For example, given the pro-tumorigenic role of the PEX

domain of MMP-14 through homodimerization or interactions with

other molecules, a novel small molecule that specifically inhibits the

PEX domain of MMP-14 was identified, which was shown to suppress

tumor growth in a xenograft mouse model of breast cancer (131).

Metastatic breast cancer is a major cause of death from breast

cancer, and targeting MMPs involved in breast cancer metastasis has

also been considered. Breast cancer frequently metastasizes to several

organs, including bone, lung, brain, and liver; with bone being the

most common metastatic site of breast cancer (97). Accordingly,

attempts have been made to develop selective MMP inhibitors that

are effective against bone metastatic breast cancer. A MMP-13

selective inhibitor (Cmpd-1), which was identified from a panel of

small molecule pyrimidinetrione-based inhibitors (132), was shown
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human breast cancer xenograft model of TNBC using MDA-MB-231

cells, suggesting that MMP-13 selective inhibitors reduce tumor-

induced bone osteolysis (133). Moreover, bisphosphonic-based

MMP-2 inhibitors specifically targeting bones also demonstrated

inhibitory effects on tumor growth and tumor-associated bone

destruction in bone metastatic mouse models of breast cancer (134)

Currently, MMP inhibitory monoclonal antibodies are considered

promising MMP-targeting therapies because they have higher target

selectivity and better pharmacokinetic profiles than small-molecule

agents (12, 135). Inhibitory monoclonal antibodies targeting a single

MMP, mainly MMP-9 or -14, have been developed and demonstrated

anti-tumor activity in preclinical models of breast cancer. A

monoclonal antibody against murine MMP-9 (AB0046) decreased

primary growth in an orthotopic model of HER2-driven breast cancer

(HC11-NeuT) in immunocompetent mice (136). This study also

showed that combined treatment with an anti-MMP-9 antibody

and immune checkpoint inhibitor (ICI) targeting programmed cell

death-ligand 1 (PD-L1), improved anti-tumor immune response to

anti-PD-L1 by increasing the levels of T-helper cell 1 type cytokines

and infiltration of effector/memory T cells into tumors. This

suggested that MMP-9 promotes anti-tumor T cell response. In

contrast, in the MMTV-PyMT luminal B breast cancer model,

blocking active MMP-9 with a monoclonal antibody suppressed

lung metastasis without affecting primary tumor growth (137). As

MMP-14 is a membrane-type MMP, and active MMP-14 is located

on the cell surface, antibody-mediated therapy can block the function

of MMP-14 in cancer. An anti-MMP-14 inhibitory antibody (DX-

2400) identified using a human Fab displaying phage library

demonstrated inhibitory effect on primary tumor growth and

incidence of metastasis to the lung and liver in a MDA-MB-231

orthotopic model (103). Based on the anti-angiogenic activity of DX-

2400, this study also evaluated the combination of DX-2400 and

bevacizumab (an antibody against VEGF) and found that it retarded

tumor growth to a greater extent than treatment with either agent

individually in the MDA-MB-231 xenograft model, suggesting a

promising approach of anti-angiogenic agents in combination with

MMP-14 inhibitor for synergistic anti-tumor effects in breast cancer.

DX-2400 was further validated to reduce primary tumor growth in

orthotopic murine breast cancer models and was found to improve

the response to radiotherapy in MMP-14-high-expressing 4T1

tumors (138). Importantly, this study revealed that tumor growth

suppression by MMP-14 blockade was associated with reduced

immunosuppressive TGF-b and the shift of macrophages to anti-

tumor M1 phenotype, while improved vascular function and tissue

oxygenation by MMP inhibition-induced increase in tumor inducible

nitric oxide synthase led to increased radiation response in MMP-14-

high-expressing tumors. Given that dysregulation of ECM genes

linked to the activation of immunosuppressive TGF-b signaling in

CAFs predicts a failure to PD-1 blockade (139), MMP-14 inhibitory

antibody inhibiting TGF-b signaling is likely to improve the response

to ICI. Another MMP-14-selective antibody (Fab 3A2) was also

identified by screening human Fab fragment libraries carrying long

convex-shaped paratopes to overcome limitations in physical access

of the antibody to the active region of MMP-14, which is concave-

shaped. Fab 3A2 was found to inhibit protease activity of the MMP-14

by accessing the convex pocket of MMP-14 (140). Moreover, a
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recombinant human IgG specific to MMP-14 (IgG 3A2)

demonstrated inhibitory effects on the growth of the primary tumor

and lung metastasis in the 4T1 highly metastatic, syngeneic,

orthotopic model of breast cancer (141). MMP-14-specific Fabs

were also identified using phage-displayed synthetic humanized Fab

library against the extracellular domain of MMP-14, and among

them, Fab 3369, which inhibits the catalytic domain of MMP-14,

demonstrated anti-tumor activities in vitro and in vivo (142). Fab3369

significantly decreased the invasion of TNBC cells in vitro and

suppressed tumor growth and metastasis in TNBC mouse models

(mammary orthotopic tumor xenografts and syngeneic 4T1

mammary tumors). Importantly, its in vivo anti-tumor effect was

associated with the disruption of immunosuppressive TME, including

limiting tumor neoangiogenesis and hypoxia, suggesting that MMP-

14 inhibitory antibody suppresses tumor progression and metastasis

through its effect on TME in TNBC. Importantly, these promising

preclinical data of MMP-9 and -14 inhibitory monoclonal antibodies

in HER2-positive breast cancer or TNBC mouse models showed that

the anti-tumor effects of MMP inhibitory antibodies are associated

with disruption of the immunosuppressive TME, indicating that the

use of MMP inhibitors in combination with immunotherapy could

improve the efficacy of immunotherapy in breast cancer.

The expression and activity of MMPs are regulated by several

mechanisms, including TIMPs (107, 108), noncoding RNAs (143, 144),

cell signaling pathways (145–147) or E3 ubiquitin ligases (148) in

cancer. MMP inhibitors using TIMPs or E3 ubiquitin ligases are

emerging as alternative strategies to develop highly specific MMP

inhibitors. A recently developed platform identified soluble TIMP-1

variants that are highly selective for the inhibition of MMP-3 over

MMP-10, which is the MMP most similar to MMP-3 in sequence,

structure, and function, indicating that this platform and screening

strategy can be used to develop selective MMP inhibitors (149).

Knockdown of the E3 ligase WSB-1 inhibited the metastatic potential

of hormone receptor-negative breast cancer in vitro and in vivo in

association with decreased MMP activity, suggesting that the activity of

pro-tumorigenic MMPs can be regulated by E3 ligase (150). In

addition, several microRNAs (miRNAs) have been reported to be

involved in cancer progression and metastasis through MMP

regulation (144). In breast cancer, miR-106b (39) and miR-429 (151)

have been shown to play a role in bone metastasis of breast cancer by

regulating MMP-2 and -9, respectively. Another study revealed that

miR-509 suppressed the invasion and trans-endothelial migration of

brain metastatic TNBC cells by inhibiting Rho-mediated MMP-9

expression, and high MMP-9 gene expression is significantly

associated with shorter brain-metastasis-free survival in breast cancer

patients, indicating that miR-509/Rho/MMP-9 axis is a potential target

of brain metastasis of breast cancer (46). These results suggest that

targeting miRNAs that regulate MMP expression is a potential avenue

to target MMP activity for breast cancer therapy. MMPs have also been

shown to be regulated by upstream signaling pathways in breast cancer.

For example, upregulation of MMP-14 was blocked by upstream PI3K-

AKT dependent b-catenin accumulation, thereby inhibiting the

invasion and migration of breast cancer cells (152). Our recent study

also showed that CCL2 produced by MMP-11-overexpressing

macrophages activates the MAPK pathway through its receptor

CCR2 in breast cancer cells, thereby enhancing the migration of

HER2-positive breast cancer cells by increasing the expression of
Frontiers in Oncology 12
MMP-9, illustrating the regulation of MMP-9 by the MAPK

pathway (57).
Conclusions

The failures of early clinical trials evaluating broad-spectrum

MMP inhibitors as anti-cancer agents revealed that MMPs can be

both drug targets and antitargets depending on the cell type in which

they are expressed or the stage of cancer. Despite the disappointing

results for early broad-spectrum MMP inhibitors and the anti-

tumorigenic roles of some MMPs, selective MMP inhibitors that

have been developed recently are still promising strategies for cancer

treatment. MMP inhibitory monoclonal antibodies targeting MMP-9

or -14 demonstrated promising anti-tumor activities in preclinical

models of breast cancer and may exhibit clinical benefits in cancer

patients without significant toxicity in clinical trials. Moreover, their

anti-tumor effects were shown to be associated with the modulation of

the tumor immune microenvironment, suggesting that a selective

MMP inhibitor in combination with immunotherapy could enhance

patients’ response to immunotherapy. However, several challenges

remain to be resolved. These include: 1) Clinical trials for MMP

inhibitors should be appropriately designed considering the stages of

cancer in which MMPs are involved. Based on the pro-tumorigenic

roles of MMPs in the pre-metastatic stages of cancer, MMP inhibitors

are likely to be clinically beneficial in early-stage cancer. 2) Given the

broad expression of multiple MMPs in various cell types, including

tumor cells, fibroblasts, ECs, and immune cells, local targeted delivery

of MMP inhibitors to specific sites may be required. 3) The

identification and validation of reliable biomarkers for predicting

the efficacy or toxicity of MMP inhibitors are also necessary to

accelerate the progress of drug development. 4) Despite the known

prognostic significance of tumoral or stromal MMPs in breast cancer,

their cell type-specific or stage-specific roles in breast cancer

progression and metastasis are not fully understood. Thus, further

studies to clarify the mechanistic roles of tumoral or stromal MMPs

during cancer progression are required to develop novel MMP

inhibitors for breast cancer treatment.
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