489 research outputs found

    Attentional state-synchronous peripheral electrical stimulation during action observation induced distinct modulation of corticospinal plasticity after stroke

    Get PDF
    IntroductionBrain computer interface-based action observation (BCI-AO) is a promising technique in detecting the user's cortical state of visual attention and providing feedback to assist rehabilitation. Peripheral nerve electrical stimulation (PES) is a conventional method used to enhance outcomes in upper extremity function by increasing activation in the motor cortex. In this study, we examined the effects of different pairings of peripheral nerve electrical stimulation (PES) during BCI-AO tasks and their impact on corticospinal plasticity.Materials and methodsOur innovative BCI-AO interventions decoded user's attentive watching during task completion. This process involved providing rewarding visual cues while simultaneously activating afferent pathways through PES. Fifteen stroke patients were included in the analysis. All patients underwent a 15 min BCI-AO program under four different experimental conditions: BCI-AO without PES, BCI-AO with continuous PES, BCI-AO with triggered PES, and BCI-AO with reverse PES application. PES was applied at the ulnar nerve of the wrist at an intensity equivalent to 120% of the sensory threshold and a frequency of 50 Hz. The experiment was conducted randomly at least 3 days apart. To assess corticospinal and peripheral nerve excitability, we compared pre and post-task (post 0, post 20 min) parameters of motor evoked potential and F waves under the four conditions in the muscle of the affected hand.ResultsThe findings indicated that corticospinal excitability in the affected hemisphere was higher when PES was synchronously applied with AO training, using BCI during a state of attentive watching. In contrast, there was no effect on corticospinal activation when PES was applied continuously or in the reverse manner. This paradigm promoted corticospinal plasticity for up to 20 min after task completion. Importantly, the effect was more evident in patients over 65 years of age.ConclusionThe results showed that task-driven corticospinal plasticity was higher when PES was applied synchronously with a highly attentive brain state during the action observation task, compared to continuous or asynchronous application. This study provides insight into how optimized BCI technologies dependent on brain state used in conjunction with other rehabilitation training could enhance treatment-induced neural plasticity

    Perioperative considerations of pyruvate dehydrogenase complex deficiency: a case report of two consecutive anesthesia

    Get PDF
    Background Pyruvate dehydrogenase complex (PDHC) deficiency is a rare mitochondrial disorder caused by a genetic mutation affecting the activity of the PDHC enzyme, which plays a major role in the tricarboxylic cycle. Few cases of surgery or anesthesia have been reported. Moreover, there is no recommended anesthetic method. Case A 24-month-old child with a PDHC deficiency presented to the emergency room with respiratory failure, mental decline, systemic cyanosis, and lactic acidosis. During hospitalization period, the patient presented with pneumothorax, pneumoperitoneum, and multiple air pockets in the heart. Two surgeries were performed under general anesthesia using an inhalational anesthetic agent. The patient was discharged with home ventilation. Conclusions Anesthesiologists should be wary of multiple factors when administering anesthesia to patients with PDHC deficiency, including airway abnormalities, acid-base imbalance, intraoperative fluid management, selection of appropriate anesthetics, and monitoring of lactic acid levels

    Effect of chitinase- 3- like protein 1 on glucose metabolism: In vitro skeletal muscle and human genetic association study

    Full text link
    We investigated the effect of chitinase- 3- like protein 1 (CHI3L1) on glucose metabolism and its underlying mechanisms in skeletal muscle cells, and evaluated whether the observed effects are relevant in humans. CHI3L1 was associated with increased glucose uptake in skeletal muscles in an AMP- activated protein kinase (AMPK)- dependent manner, and with increased intracellular calcium levels via PAR2. The improvement in glucose metabolism observed in an intraperitoneal glucose tolerance test on male C57BL/6J mice supported this association. Inhibition of the CaMKK was associated with suppression of CHI3L1- mediated glucose uptake. Additionally, CHI3L1 was found to influence glucose uptake through the PI3K/AKT pathway. Results suggested that CHI3L1 stimulated the phosphorylation of AS160 and p38 MAPK downstream of AMPK and AKT, and the resultant GLUT4 translocation. In primary myoblast cells, stimulation of AMPK and AKT was observed in response to CHI3L1, underscoring the biological relevance of CHI3L1. CHI3L1 levels were elevated in cells under conditions that mimic exercise in vitro and in exercised mice in vivo, indicating that CHI3L1 is secreted during muscle contraction. Finally, similar associations between CHI3L1 and metabolic parameters were observed in humans alongside genotype associations between CHI3L1 and diabetes at the population level. CHI3L1 may be a potential therapeutic target for the treatment of diabetes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162777/2/fsb220907.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162777/1/fsb220907_am.pd

    Toll-Like Receptor 4 Signaling is Involved in IgA-Stimulated Mesangial Cell Activation

    Get PDF
    PURPOSE: Deposition of polymeric IgA1 in the kidney mesangium is the hallmark of IgA nephropathy, but the molecular mechanisms of IgA-mediated mesangial responses and inflammatory injuries remain poorly understood. We hypothesize that Toll-like receptor 4 (TLR4) is involved in IgA-induced mesangial cell activation. MATERIALS AND METHODS: Mouse mesangial cells were stimulated with lipopolysaccharide (LPS) (1 μg/mL), IgA (20 μg/mL), or both, and TLR4 expression was measured by real time RT-PCR and Western blot. Intracellular responses to LPS or IgA were assessed by Western blot for ERK1/2, JNK, p38 MAP kinases (MAPKs), Iκ-Bα degradation and fibronectin secretion. MCP-1 secretion was assessed by ELISA. Small interfering RNA (siRNA) of TLR4 was used to confirm that the effects were caused by TLR4 activity. RESULTS: LPS- or IgA-treatment upregulated the levels of TLR4 mRNA and protein in cultured MMC at 24 h. LPS and IgA induced rapid phosphorylation of MAPKs, but degradation of Iκ-Bα was observed only in LPS-treated MMC. LPS, but not IgA, induced increased secretion of MCP-1 and fibronectin at 24 h or 48 h. Combined LPS and IgA treatment did not cause additional increases in TLR4 mRNA and protein levels or Iκ-Bα degradation, and MCP-1 and fibronectin secretions were less than with LPS alone. LPS- or IgA-induced TLR4 protein levels and MAPK activation were inhibited by transfection with TLR4 siRNA. CONCLUSION: These results indicate that the activation of MAPKs and MCP-1 secretion are mediated by TLR4, at least in part, in IgA-treated mesangial cells. TLR4 is involved in mesangial cell injury by induction of pro-inflammatory cytokines in IgA nephropathy.ope

    Giant thermal hysteresis in Verwey transition of single domain Fe3O4 nanoparticles

    Get PDF
    Most interesting phenomena of condensed matter physics originate from interactions among different degrees of freedom, making it a very intriguing yet challenging question how certain ground states emerge from only a limited number of atoms in assembly. This is especially the case for strongly correlated electron systems with overwhelming complexity. The Verwey transition of Fe3O4 is a classic example of this category, of which the origin is still elusive 80 years after the first report. Here we report, for the first time, that the Verwey transition of Fe3O4 nanoparticles exhibits size-dependent thermal hysteresis in magnetization, 57Fe NMR, and XRD measurements. The hysteresis width passes a maximum of 11 K when the size is 120 nm while dropping to only 1 K for the bulk sample. This behavior is very similar to that of magnetic coercivity and the critical sizes of the hysteresis and the magnetic single domain are identical. We interpret it as a manifestation of charge ordering and spin ordering correlation in a single domain. This work paves a new way of undertaking researches in the vibrant field of strongly correlated electron physics combined with nanoscience.Comment: 13 pages, 4 figure

    Childbearing women of twenty and under are at greater risk than those of twenty-five and over for compromised folate status

    Get PDF
    This study assessed folate intakes, folate concentrations in plasma and erythrocytes, plasma total homocysteine (tHcy) concentration, and urinary excretion of folate metabolites in Korean women with childbearing potential. A total of 23 women voluntarily participated in this study. Precise dietary intakes for 3 consecutive days were determined by weighing all foods consumed and folate intake was calculated using a computer-aided dietary analysis system. Folate concentration of plasma and erythrocytes was determined by a microbiological method. Plasma tHcy concentration was assayed using an HPLC analysis method. Urine excreted over the same period of time was collected and folate catabolites, para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (ApABG), were evaluated using a reverse-phase HPLC method after affinity chromatography. Young women of 20 and under were likely to consume less folate with low energy intake, had lower folate concentration in plasma and erythrocytes, and excreted a lesser amount of ApABG and total folate catabolites than women of 25 years and over. The results of this study confirmed that young Korean women with childbearing potential, especially those under 21 years of age, might be at risk for compromised folate status due to insufficient folate intakes from inadequate energy consumption

    Microporation is a valuable transfection method for efficient gene delivery into human umbilical cord blood-derived mesenchymal stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells (MSCs) are an attractive source of adult stem cells for therapeutic application in clinical study. Genetic modification of MSCs with beneficial genes makes them more effective for therapeutic use. However, it is difficult to transduce genes into MSCs by common transfection methods, especially nonviral methods. In this study, we applied microporation technology as a novel electroporation technique to introduce enhanced green fluorescent protein (EGFP) and brain-derived neurotropfic factor (BDNF) plasmid DNA into human umbilical cord blood-derived MSCs (hUCB-MSCs) with significant efficiency, and investigated the stem cell potentiality of engineered MSCs through their phenotypes, proliferative capacity, ability to differentiate into multiple lineages, and migration ability towards malignant glioma cells.</p> <p>Results</p> <p>Using microporation with EGFP as a reporter gene, hUCB-MSCs were transfected with higher efficiency (83%) and only minimal cell damage than when conventional liposome-based reagent (<20%) or established electroporation methods were used (30-40%). More importantly, microporation did not affect the immunophenotype of hUCB-MSCs, their proliferation activity, ability to differentiate into mesodermal and ectodermal lineages, or migration ability towards cancer cells. In addition, the BDNF gene could be successfully transfected into hUCB-MSCs, and BDNF expression remained fairly constant for the first 2 weeks <it>in vitro </it>and <it>in vivo</it>. Moreover, microporation of BDNF gene into hUCB-MSCs promoted their <it>in vitro </it>differentiation into neural cells.</p> <p>Conclusion</p> <p>Taken together, the present data demonstrates the value of microporation as an efficient means of transfection of MSCs without changing their multiple properties. Gene delivery by microporation may enhance the feasibility of transgenic stem cell therapy.</p
    corecore