74 research outputs found

    Quantum features of a charged particle in ionized plasma controlled by a time-dependent magnetic field

    Get PDF
    Quantum characteristics of a charged particle traveling under the influence of an external time-dependent magnetic field in ionized plasma are investigated using the invariant operator method. The Hamiltonian that gives the radial part of the classical equation of motion for the charged particle is dependent on time. The corresponding invariant operator that satisfies Liouville-von Neumann equation is constructed using fundamental relations. The exact radial wave functions are derived by taking advantage of the eigenstates of the invariant operator. Quantum properties of the system is studied using these wave functions. Especially, the time behavior of the radial component of the quantized energy is addressed in detail

    Analyzing Quantum Time‐Dependent Singular Potential Systems in One Dimension

    Get PDF
    Quantum states of a particle subjected to time‐dependent singular potentials in one‐dimension are investigated using invariant operator method and the Nikiforov‐Uvarov method. We consider the case that the system is governed by two singular potentials which are the Coulomb potential and the inverse quadratic potential. An invariant operator that is a function of time has been constructed via a fundamental mechanics. This invariant operator is transformed to a simple one using a unitary operator, which is a time‐independent invariant operator. By solving the Schrödinger equation in the transformed system, analytical forms of exact eigenvalues and eigenfunctions of the invariant operator are evaluated in a simple elegant manner with the help of the Nikiforov‐Uvarov method. Eventually, the full wave functions in the original system (untransformed system) are obtained through an inverse unitary transformation from the wave functions in the transformed system. Quantum characteristics of the system associated with the wave functions are addressed in detail

    Quantum Analysis on Time Behavior of a Lengthening Pendulum

    Get PDF

    Classical analysis of time behavior of radiation fields associated with biophoton signals

    Get PDF
    BACKGROUND: Propagation of photon signals in biological systems, such as neurons, accompanies the production of biophotons. The role of biophotons in a cell deserves special attention because it can be applied to diverse optical systems

    Time-dependent coupled oscillator model for charged particle motion in the presence of a time varyingmagnetic field

    Full text link
    The dynamics of time-dependent coupled oscillator model for the charged particle motion subjected to a time-dependent external magnetic field is investigated. We used canonical transformation approach for the classical treatment of the system, whereas unitary transformation approach is used when managing the system in the framework of quantum mechanics. For both approaches, the original system is transformed to a much more simple system that is the sum of two independent harmonic oscillators which have time-dependent frequencies. We therefore easily identified the wave functions in the transformed system with the help of invariant operator of the system. The full wave functions in the original system is derived from the inverse unitary transformation of the wave functions associated to the transformed system.Comment: 16 page
    corecore