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1. Introduction

In spite of remarkable advance of quantum optics, there would be many things that are
yet to be developed regarding the properties of light. One of them is the behavior of
light propagating or confined in time-varying media. If the characteristic parameters of
medium such as electric permittivity, magnetic permeability, and electric conductivity are
dependent on time, the medium is classified as time-varying media. After the publication
of a seminal paper by Choi and Yeon (Choi & Yeon, 2005), there has been a surge of renewed
research for electromagnetic field quantization in time-varying media and for the properties
of corresponding quantized fields (Budko, 2009; Choi, 2010a; Choi, 2010b). Some important
examples that the theory of optical wave propagation in time-varying media is applicable
are magnetoelastic delay lines (Rezende & Morgenthaler, 1969), wave propagation in ionized
plasmas (Kozaki, 1978), the modulation of microwave power (Morgenthaler, 1958), and novel
imaging algorithms for dynamical processes in time-varying physical systems (Budko, 2009).

To study the time behavior of light rigorously, it may be crucial to quantize it. The purpose
of this chapter is to analyze nonclassical properties of superpositions of quantum states
for electromagnetic fields in time-varying linear media. The methods for quantization of a
light propagating in free space or in transparent material is well known, since each mode
of the field in that case acts like a simple harmonic oscillator. However, the quantization
procedure for a light in a time-varying background medium is somewhat complicate and
requires elaborate technic in accompanying mathematical treatments. One of the methods
that enable us to quantize fields in such situation is to introduce an invariant operator theory
(Lewis & Riesenfeld, 1969) in quantum optics. The invariant operator theory which employs
Lewis-Riesenfeld invariants is very useful in deriving quantum solutions for time-dependent
Hamiltonian systems in cases like this. The light in homogeneous conducting linear media
which have time-dependent parameters will be quantized and their quantum properties will
be investigated on the basis of invariant operator theory. The exact wave functions for the
system with time-varying parameters will be derived in Fock, coherent, and squeezed states
in turn.

For several decades, much attention has been devoted to the problem of superposed quantum
states (the Schrödinger cat states) of an optical field (Choi & Yeon, 2008; Ourjoumtsev et
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al., 2006; Yurke & Stoler, 1986). The superpositions in both coherent states and squeezed
states of electromagnetic field are proved to be quite interesting and their generation has
been an important topic in quantum optics thanks to their nonclassical properties such as
high-order squeezing, subpoissonian photon statistics, and oscillations in the photon-number
distribution (Richter & Vogel, 2002; Schleich et al., 1991). Moreover, it is shown that
the Schrödinger cat states provide an essential tool for quantum information processing
(Ourjoumtsev et al, 2006).

It may be interesting to study a phase space distribution function so-called Wigner distribution
function (WDF) (Wigner, 1932) for Schrödinger cat states for fields in time-varying media.
The propagation of a signal through optical systems is well described by means of the WDF
transformations (Bastiaans, 1991), which results in accompaniment of the reconstruction of
the propagated signal. A convolution of the WDF allows us to know the phase space
distribution connected to a simultaneous measurement of position and momentum. Due
to its square integrable property, the WDF always exists and can be employed to evaluate
averages of Hermitian observables that are essential in the quantum mechanical theory. The
WDF is regarded as ’quasiprobability distribution function’, since it can be negative as well
as positive on subregions of phase space. Gaussian is the only pure state for which the
WDF is positive everywhere. In view of quantum optics, Bastiaans showed that the WDF
provides a link between Fourier optics and the geometrical optics (Bastiaans, 1980). The
WDF has been widely used in explaining intrinsic quantum features which have no classical
analogue in various branches of physics, such as decoherence (Zurek, 1991), Fourier quantum
optics (Bartelt et al, 1980), and interference of quantum amplitudes (Bužek et al., 1992). The
nonclassical properties of superpositions of quantum states for electromagnetic fields with
time-dependent parameters will be studied here via WDF.

2. Quantization of light in time-varying media

The characteristics of electromagnetic fields in media are determined in general by the
parameters of media such as electric permittivity ǫ, magnetic permeability µ, and electric
conductivity σ. If σ = 0 and other two parameters are real constants, the electromagnetic
fields behave like simple harmonic oscillators. The electromagnetic fields propagating along
a medium that have non-zero conductivity undergo dissipation that entails their energy
loss. In case that the value of one or more parameters of media is complex and/or
time-dependent, the mathematical description of optical fields may be not an easy task. We
suppose that the parameters are time-dependent and use invariant operator theory to quantize
the electromagnetic fields in such medium. The relations between fields and current in linear
media are

D = ǫ(t)E, H =
B

µ(t)
, J = σ(t)E. (1)

The Maxwell’s equations in media that have no charge source can be written in SI unit as

∇ · D = 0, (2)

∇ · B = 0, (3)

∇× E = − ∂B

∂t
, (4)

∇× H = J +
∂D

∂t
. (5)
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A fundamental relation between electromagnetic fields and potentials are

E = −∇Φ − ∂A

∂t
, (6)

B = ∇× A, (7)

where Φ is a scalar potential and A is a vector potential. We take Coulomb gauge due to its
usefulness in this situation. In particular Coulomb gauge is more advantageous in describing
a purely transverse wave. The scalar potential then vanishes since we assumed that there
is no net charge source. As a consequence, both the electric and the magnetic fields can be
expanded only in terms of vector potential.

By solving Eqs. (2)-(5) considering Eqs. (6) and (7), we obtain a time-dependent damped wave
equation such that

∇2A − [σ(t) + ǫ̇(t)]µ(t)
∂A

∂t
− ǫ(t)µ(t)

∂2A

∂t2 = 0. (8)

To decouple the vector potential into position and time functions, it is necessary to put

A(r, t) = ∑
l

ul(r)ql(t), (9)

where particular modes are denoted by subscript l. The substitution of Eq. (9) into Eq. (8)
leads to

∇2ul(r) + k2
l ul(r) = 0, (10)

∂2ql(t)

∂t2 +
σ(t) + ǫ̇(t)

ǫ(t)

∂ql(t)

∂t
+ c2(t)k2

l ql(t) = 0, (11)

where kl are separation constants and c(t) is the time-dependent velocity of light which is
given by c(t) = 1/

√

ǫ(t)µ(t). Actually kl are wave numbers that can be represented as

kl =
ωl(t)

c(t)
, (12)

where ωl(t) are time-dependent natural angular frequencies. From the fact that kl are
constants, we have

ωl(t)

c(t)
=

ωl(0)
c(0)

. (13)

From now on, let us omit under subscript l from notations for the shake of convenience.

Using fundamental theory of dynamics, we can construct the Hamiltonian of the system
associated with Eq. (11) to be

Ĥ(q̂, p̂, t) =
1

2ǫ0
e−Λ(t) p̂2 +

1
2

eΛ(t)ǫ0ω2(t)q̂2, (14)

where ǫ0 = ǫ(0) and Λ(t) =
∫ t

0 {[σ(t′) + ǫ̇(t′)]/ǫ(t′)}dt′. If we consider that this Hamiltonian
is a time-varying form, the introduction of a suitable invariant operator K̂ may enable us to
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obtain quantum solutions of the system. The invariant operator can be evaluated from

dK̂

dt
=

∂K̂

∂t
+

1
ih̄
[K̂, Ĥ] = 0, (15)

which is known as Liouville-von Neumann equation. Execution of some algebra after
inserting Eq. (14) into the above equation gives

K̂ =

(

Ω

2ρ(t)
q̂

)2

+ [ρ(t) p̂ − ǫ0eΛ(t) ρ̇(t)q̂]2, (16)

where Ω is an arbitrary real positive constant and ρ(t) is some real time-function that satisfies
the following differential equation

ρ̈(t) +
σ(t) + ǫ̇(t)

ǫ(t)
ρ̇(t) + ω2(t)ρ(t)− Ω2

4ǫ2
0

e−2Λ(t) 1
ρ3(t)

= 0. (17)

If we introduce annihilation and creation operators of the form

â =

√

1
h̄Ω

[(

Ω

2ρ(t)
− iǫ0eΛ(t) ρ̇(t)

)

q̂ + iρ(t) p̂

]

, (18)

â† =

√

1
h̄Ω

[(

Ω

2ρ(t)
+ iǫ0eΛ(t) ρ̇(t)

)

q̂ − iρ(t) p̂

]

, (19)

the invariant operator can be rewritten as

K̂ = h̄Ω

(

â† â +
1
2

)

. (20)

Note that Eqs. (18) and (19) are different from those of simple harmonic oscillator.

If we denote two linearly independent homogeneous solutions of Eq. (11) as ρ1(t) and ρ2(t),
ρ(t) is given by (Eliezer & Gray, 1976)

ρ(t) = [h1ρ2
1(t) + h2ρ1(t)ρ2(t) + h3ρ2

2(t)]
1/2, (21)

where h1, h2, and h3 are constants that follow some relation imposed between them. In terms
of an Wronskian w which is a time-constant and has the form

w = ǫ0eΛ(t)[ρ1(t)ρ̇2(t)− ρ̇1(t)ρ2(t)], (22)

h1, h2, and h3 yield
4h1h3 − h2

2 = Ω2/w2. (23)

As an example, we can take the electromagnetic parameters to be

ǫ(t) = ǫ0eγt, µ(t) = µ(0), σ(t) = 0, (24)

where γ is a real constant. Then, the Wronskian can be rewritten as

w = ǫ(t)[ρ1(t)ρ̇2(t)− ρ̇1(t)ρ2(t)], (25)

28 Quantum Optics and Laser Experiments

www.intechopen.com



Nonclassical Properties of Superpositions of Coherent and Squeezed States for Electromagnetic Fields in Time-Varying Media 5

where ρ1(t) and ρ2(t) are given by

ρ1(t) = ρ1,0 e−γt/2 J1[ξ(t)], (26)

ρ2(t) = ρ2,0 e−γt/2N1[ξ(t)]. (27)

Here, ρ1,0 and ρ2,0 are arbitrary real constants and ξ(t) = [2ω(0)/γ]e−γt/2.

If we consider the asymptotic behavior of Bessel functions for x ≫ 1:

Jm(x) ≃
√

2
πx

cos
(

x − m
π

2
− π

4

)

, (28)

Nm(x) ≃
√

2
πx

sin
(

x − m
π

2
− π

4

)

, (29)

ρ1(t) and ρ2(t), in the limit ξ ≫ 1 with a selection of ρ1,0 = −ρ2,0 =
√

πΩ/(2ǫ0γ), becomes

ρ1(t) ≃
√

Ω

ǫ0γξ(t)
e−γt/2 cos

(

ξ(t)− 3π

4

)

, (30)

ρ2(t) ≃ −
√

Ω

ǫ0γξ(t)
e−γt/2 sin

(

ξ(t)− 3π

4

)

. (31)

Then, Ω/(2w) = 1 and, as a consequence, we can choose h1 = h3 = 1 and h2 = 0 so that Eq.
(21) reduces to ρ(t) = [ρ2

1(t) + ρ2
2(t)]

1/2 which is a well used relation in the literature (Choi,
2010b).

We can directly check that the ladder operators satisfy the boson commutation relation
[â, â†] = 1. Therefore, it is possible to obtain zero-point eigenstate 〈q|φ0(t)〉 of K̂ from
â〈q|φ0(t)〉 = 0 and nth order eigenstate by operating â† n times into 〈q|φ0(t)〉. Thus we
finally get

〈q|φn(t)〉 = 4

√

Ω

2ρ2(t)h̄π

1√
2nn!

Hn

(√

Ω

2ρ2(t)h̄
q

)

× exp
[

− 1
2ρ(t)h̄

(

Ω

2ρ(t)
− iǫ0eΛ(t) ρ̇(t)

)

q2
]

, (32)

where Hn is nth order Hermite polynomial. For the time-dependent Hamiltonian systems in
cases like this, the Schrödinger solutions are different from the eigenstates 〈q|φn(t)〉 by only
time-dependent phase factors (Lewis & Riesenfeld, 1969):

〈q|ψn(t)〉 = 〈q|φn(t)〉 exp [iθn(t)]. (33)

If we insert this equation together with Eq. (14) into Schrödinger equation, we obtain the
phases θn(t) as:

θn(t) = −
(

n +
1
2

)

Ω

2ǫ0

∫ t

0

e−Λ(t′)

ρ2(t′)
dt′. (34)

The probability of finding the real photons is given by probability density that is squared
modulus of the wave function, while the wave function itself in general has no physical reality.
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The probability density |〈q|ψn(t)〉|2 in number state is illustrated in Fig. 1 as a function

Fig. 1. Probability density in number state as a function of q and t. We used n = 4, h̄ = 1,
γ = 0.3, ǫ0 = 1, µ(0) = 1, Ω = 1, c1 = c2 = 25, ω(0) = 1, h1 = h3 = Ω/(2w), h2 = 0, and
ρ1,0 = ρ2,0 = 0.5. All values are taken to be dimensionless for convenience (This convention
will be used in all figures in this chapter).

of q and t. The parameters chosen in this figure are the same as those of Eq. (24). (This
choice will also be hold in all subsequent figures without mentioning.) The probability density
converges to origin (q = 0) as time goes by. This means that the amplitude of electromagnetic
wave decreases with time. In general, the damping factor (σ + ǫ̇)/ǫ appeared in Eq. (11) is
responsible for the dissipation of amplitude. As you can see form Eq. (24), it is kept that
σ = 0 in our model example but ǫ̇ is not zero. Therefore, the variation of ǫ(t) with time is
the actual factor that leads to take place the dissipation of amplitude in this case. Note that
ǫ(t) exponentially increases depending on γ. Thus,for large γ, the amplitude decreases more
rapidly.

The density operator ̺ is defined in the form

ˆ̺ = ∑
n,m

̺nm|ψn〉〈ψm|. (35)

Then, the WDF is represented in terms of ˆ̺ as

W(q, p, t) =
1

πh̄

∫ ∞

−∞
〈q − x| ˆ̺|q + x〉e2ipx/h̄dx. (36)

The properties of superposition states are well understood from WDF representation. A little
algebra gives

W(q, p, t) =
1

πh̄

∫ ∞

−∞
ˆ̺(q − x, q + x, t)e2ipx/h̄dx. (37)

30 Quantum Optics and Laser Experiments
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It is well known that the WDF for number state consists of many concentric circles of
ridge and valley which have different radii (Choi, 2004). The total number of ridge and
valley is associated with the quantum number of the system and the value of WDF at a
valley is negative. Whenever the WDF takes on negative values in parts of the phase,
the corresponding state is regarded as nonclassical one. Due to its allowance of negative
values, it is impossible to interpret WDF as the real distribution function. For this reason,
there have been established several kinds of weighted WDF that takes non-negative value
in phase space (Mogilevtsev & Kilin, 2000). The negative values of WDF have indeed been
observed from lots of experimental measurements for a variety of states of optical field and
matter (Leonhardt, 1997). However, integration of WDF over either of q and p makes it to be
probability distribution for the other

∫ ∞

−∞
W(q, p, t)dq = |ψ(p, t)|2, (38)

∫ ∞

−∞
W(q, p, t)dp = |ψ(q, t)|2. (39)

These formulae guarantee WDF to be a quantum distribution function (but quasi) in spite of
its singular properties.

3. Superposition of coherent states

The state engineering can also be achieved using a coherent-state expansion, instead of
expanding number-state whose wave function is derived in the previous section. Coherent
state for harmonic oscillator were firstly found by Schrödinger (Schrödinger, 1926) and
rediscovered afterwards by Glauber (Glauber, 1963). Though coherent states are classical-like
quantum states and hardly exhibit nonclassical effects, most class of superposition of coherent
states can exhibit one or more nonclassical effects among various possible nonclassicality such
as sub-Poissonian photon statistics and squeezing.

The coherent state |α〉 is an eigenstate of the annihilation operator:

â|α〉 = α|α〉. (40)

If we consider Eq. (18), α is given by

α =

√

1
h̄Ω

[(

Ω

2ρ(t)
− iǫ0eΛ(t) ρ̇(t)

)

qcl(t) + iρ(t)pcl(t)

]

, (41)

where qcl(t) and pcl(t) are classical trajectories of variables q and p, which are given by

qcl(t) = c1ρ1(t) + c2ρ2(t), (42)

pcl(t) = ǫ0eΛ(t) dqcl(t)

dt
= ǫ0eΛ(t)[c1ρ̇1(t) + c2ρ̇2(t)], (43)

where c1 and c2 are arbitrary real constants. If we divide α into real and imaginary parts such
that

αR =

√

Ω

h̄

1
2ρ(t)

[c1ρ1(t) + c2ρ2(t)], (44)

31
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αI =

√

1
h̄Ω

ǫ0eΛ(t){ρ(t)[c1ρ̇1(t) + c2ρ̇2(t)]− ρ̇(t)[c1ρ1(t) + c2ρ2(t)]}, (45)

the eigenstate can be represented in terms of amplitude α0 and phase ϕ:

α = α0eiϕ, (46)

where

α0 =
√

α2
R + α2

I , (47)

ϕ = tan−1(αI/αR). (48)

The substitution of Eqs. (44) and (45) into Eqs. (47) and (48) leads to

α0 =

√

Ω(c2
1h3 − c1c2h2 + c2

2h1)

h̄(4h1h3 − h2
2)

, (49)

ϕ(t) = tan−1

⎛

⎝

2h1c2ρ1(t)− h2[c1ρ1(t)− c2ρ2(t)]− 2h3c1ρ2(t)
√

4h1h3 − h2
2[c1ρ1(t) + c2ρ2(t)]

⎞

⎠ . (50)

The time behavior of ϕ(t) is illustrated in Fig. 2. The considered domain for ϕ(t) in this
figure is −π/2 < ϕ(t) < π/2, i.e., ϕ(t) ≡ mπ + δ(t) → δ(t) where m is an integer and
−π/2 < δ(t) < π/2 at a given time. The direct differentiation of Eq. (50) with respect to time
gives

dϕ(t)

dt
= −Ωe−Λ(t)

2ǫ0ρ2(t)
. (51)

Thus, we can represent ϕ in another way such that

ϕ(t) = − Ω

2ǫ0

∫ t

0

e−Λ(t′)

ρ2(t′)
dt′ + ϕ(0). (52)

It may be instructive to compare this equation with Eq. (34). The time behavior of ϕ(t) is the
same as that of θn(t) when we neglect some constants.

By operating 〈q| from left in Eq. (40), the coherent state in configuration space is obtained.
Then, a suitable choice of phase leads to (Choi & Yeon, 2008)

〈q|α〉 = 4

√

Ω

2ρ2(t)h̄π
exp

[

α

√

Ω

ρ2(t)h̄
q − 1

4ρ(t)h̄

×
(

Ω

ρ(t)
− 2iǫ0eΛ(t) ρ̇(t)

)

q2 − 1
2

α2
0 −

1
2

α2

]

. (53)

The relation between coherent state and number state eigenfunction is given by

〈q|α〉 = exp
(

−1
2

α2
0

)

∑
n

αn

√
n!
〈q|φn(t)〉. (54)
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Fig. 2. The time evolution of ϕ for various values of γ. We used ǫ0 = 1, Ω = 1, c1 = c2 = 25,
ω(0) = 1, h1 = h3 = Ω/(2w), h2 = 0, and ρ1,0 = ρ2,0 = 0.5.
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We can easily show that the probability density |〈q|α〉|2 is Gaussian from a fundamental
evaluation. As mentioned earlier, the only pure states for which the WDF is positive
everywhere are those that their corresponding probability density is Gaussian in cases like
this. We can confirm from Fig. 3 that the trajectory of the peak of |〈q|α〉|2 oscillates like a

Fig. 3. Probability density in coherent state as a function of q and t. The value of γ is 0.1 for
(a) and 0.3 for (b). We used h̄ = 1, ǫ0 = 1, µ(0) = 1, Ω = 1, c1 = c2 = 25, ω(0) = 1,
h1 = h3 = Ω/(2w), h2 = 0, and ρ1,0 = ρ2,0 = 0.5.

classical state and converges near to origin as time goes by due to the influence of damping
factor γ. Although coherent state is a pure quantum state, its properties lie on a borderline
between those of classical state and quantum states.

34 Quantum Optics and Laser Experiments
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From the early days of quantum mechanics, there have been great efforts for the problem
of generating arbitrary quantum states including nonclassical states of an optical field
mode. In particular, the superposition of coherent state (which is the main topic in this
section) and the superposition of squeezed state (that will be treated in the next section)
attracted much attention in the literature. A widely accepted criterion that a state to
be classified as nonclassical one is exist: A quantum state has nonclassicality when the
Glauber-Sudarshan P-function (Glauber, 1963; Sudarshan, 1963) fails to show the properties
of a classical probability density. However, in many cases, this definition may hardly be
applied to investigate the nonclassicality for a direct interpretation of experiments due to quite
singular characteristics of P-function and the difficulty in determining P-function from given
measurements. In fact, even for the simple harmonic oscillator, the exact characterization
of the nonclassicality of a quantum state in terms of measurable quantities is somewhat
ambiguous. A hierarchy of observable conditions for nonclassical quantum states, which
allows one to verify whether the P-function for a specific state shows the properties of a
classical probability density or not, has been reported (Richter & Vogel, 2002), while the global
criteria for nonclassicality of states are yet the subject of researches.

Meanwhile, a method to reconstruct characteristic functions of a quantum state, such as
the density matrix, the WDF, and the P-function, from experimentally accessible data is
established, which is known as optical homodyne tomography (Smithey et al., 1993; Kiesel
et al., 2008). It is possible to reconstruct the P-function up to sufficiently large thermal photon
number whereas other criteria for nonclassicality, such as the Klyshko criterion (Klyshko,
1996), negativities of the WDF, and the entanglement potential (Asbóth, 2005), start to fail
as the number of thermal photon increases (Kiesel et al., 2008). Though both definitions of
nonclassicality in terms of P-function and in terms of WDF are sufficient but not necessary and
leave some families of nonclassical quantum states outside their scope (Lvovsky & Shapiro,
2002). Of course, a satisfaction of the requirements of either definition does not automatically
grantee satisfaction of the other. While the condition for nonclassicality based on P-function is
more general than that based on WDF and covers more broad range of nonclassical quantum
states, the negativity of the WDF, that is our main concern in this Chapter, is recognized as
very strong indication for nonclassical character of quantum states.

The nonclassical properties of quantized light is highlighted by superposing two distinct
states. Let us consider a superposition of two coherent states, that the corresponding wave
function is represented in the form

〈q|ψ(t)〉 = 1√
N
(〈q|α0eiϕ〉+ eiφ〈q|α0e−iϕ〉), (55)

where
N = 2{1 + exp(−2α2

0 sin2 ϕ) cos[α2
0 sin(2ϕ)− φ]}. (56)

Here, the total phase difference between two constituent states in superposition is 2ϕ, and the
relative phase between the two components of the superposition is φ. Strictly speaking, this
definition of cat state is somewhat different from that of Tara et al (Tara et al., 1993) [or that of
Schleich et al. (Schleich et al., 1991), for φ = 0]: The cat state of Tara et al. is defined in terms
of |αeiϑ〉 and |αe−iϑ〉 instead of |α0eiϕ〉 and |α0e−iϕ〉, where ϑ is an arbitrary real constant.
The interaction of coherent states with nonlinear medium can be a source for generating
superposed coherent states (Tara et al, 1993). Not only the quadrature squeezing but also
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the Sub-Poissonian and oscillatory photon statistics are typical consequences of nonclassical
effects of quantum interference produced by superposition.

While the coherent states among all pure quantum states have the most properties of
classicality, their superposition represented in Eq. (55) reveals remarkable features of
nonclassicality. By substituting Eq. (53) into Eq. (55), we easily get the wave function in
configuration space:

〈q|ψ(t)〉 = 4

√

Ω

2ρ2(t)h̄π

2√
N

exp

[

− 1
4ρ(t)h̄

(

Ω

ρ(t)
− 2iǫ0eΛ(t) ρ̇(t)

)

q2 − 1
2

α2
0 +

iφ

2

]

× exp

(

α0

√

Ω

ρ2(t)h̄
q cos ϕ − 1

2
α2

0 cos(2ϕ)

)

× cos

(

α0

√

Ω

ρ2(t)h̄
q sin ϕ − 1

2
α2

0 sin(2ϕ)− φ

2

)

. (57)

Though the illustration for the probability density |〈q|ψ(t)〉|2 given in Fig. 4 is somewhat
complicate, the principal trajectory of |〈q|ψ(t)〉|2 is very similar to that of |〈q|α)〉|2 given in Fig.
3. The superposition in a case like this become a family of Schrödinger cat states only when
the amplitude of the electromagnetic field is sufficiently large. Theoretical results of several
previous researches (Kis et al., 2001; Varada &. Agarwal, 1993) show that certain quantum
states can be approximated by superposing macroscopically distinguishable coherent states.

As is well known, WDF provides a possible method to describing a quantum system in terms
of a quasi-distribution in phase space. It enables us to analyze the interference between two
component states involved in the superposition. The WDF for the superposed coherent state
is obtained from

W(q, p, t) =
1

πh̄

∫ ∞

−∞
〈ψ(t)|q + x〉〈q − x|ψ(t)〉e2ipx/h̄dx. (58)

Performing the integration after inserting Eq. (57) into the above equation gives

W(q, p, t) =
2

πh̄N
exp

(

2

√

Ω

h̄ρ2(t)
qα0 cos ϕ

)

exp
(

− 2
h̄Ω

K(q, p, t)

)

×[exp(−2α2
0) cosh Θ1 + exp(−2α2

0 cos2 ϕ) cos(Θ2 − φ)], (59)

where

K(q, p, t) =
Ω2

4ρ2(t)
q2 +

[

ρ(t)p − ǫ0eΛ(t) ρ̇(t)q
]2

, (60)

Θ1 =
4ρ(t)α0 sin ϕ√

Ωh̄

(

p − ǫ0eΛ(t) ρ̇(t)

ρ(t)
q

)

, (61)

Θ2 = 2

√

Ω

h̄ρ2(t)
qα0 sin ϕ − α2

0 sin(2ϕ). (62)
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Fig. 4. Probability density for superposition of coherent states as a function of q and t. The
value of γ is 0.1 for (a) and 0.3 for (b). We used h̄ = 1, ǫ0 = 1, µ(0) = 1, φ = 1, Ω = 1,
c1 = c2 = 25, ω(0) = 1, h1 = h3 = Ω/(2w), h2 = 0, and ρ1,0 = ρ2,0 = 0.5.

From Fig. 5, we can find the nonclassical characteristics of the superposed coherent state.
The two bells that are Gaussian type correspond to the two constituent coherent states, and
the ripple given in the middle between them is taken place from quantum interference.
Interference occurs when the two bells do not overlap, but the WDF should have non-zero
values along their common intervals in q and/or p coordinates (Dragoman, 2001). As you can
see, some parts of the ripple take on negative value. This is a clear signal for the existence of
nonclassical features of the system. The number of peaks in the structure of the ripple becomes
large as the distance between the two bells increases. We can confirm from this aspect that the
wavelength of interference fringe is inversely proportional to the value of α0. The wavelength
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Fig. 5. Quadrature plot of WDF for superposition of coherent states. We used h̄ = 1, γ = 0.1,
ǫ0 = 1, µ(0) = 1, φ = 1, Ω = 1, c1 = c2 = 25, ω(0) = 1, t = 1, h1 = h3 = Ω/(2w), h2 = 0, and
ρ1,0 = ρ2,0 = 0.5.

of interference fringe is a major factor that determine the shape of interference in probability
density displayed in Fig. 4 (and Figs. 6 and 7 for the superposed squeezed state). Recall that
the interference pattern in probability density for an arbitrary superposition state is connected
with its WDF via Eqs. (38) and (39). If we consider, in the context of classical mechanics,
that the physical attributes of a system exist objectively even when it is unknown, classical
mechanics fails to give a reasonable explanation for the negative values in the superposition
states.

If we consider that the last term in Eq. (59) involving cos(Θ2 − φ) is the interference term,
the structure of interference varies according to the value of φ. The superposition with
φ = 0 for simple harmonic oscillator and the corresponding WDF are studied in detail by
several researchers (Bužek et al., 1992; Raimond et al., 1997; Schleich et al., 1991; Varada &.
Agarwal, 1993). In particular, some researchers (Simon et al., 1997; Yurke & Stoler, 1986) are
interested in superpositions with φ = π/2 for a little different aspect than here, thanks to their
experimental realizability, for this family of states, through the evolution of a coherent state in
a Kerr medium. For φ = π/2, Eq. (59) becomes

W(φ = π/2; q, p, t) =
2

πh̄Nπ/2
exp

[

−2

√

Ω

h̄ρ2(t)
qα0 cos ϕ

]

exp
(

− 2
h̄Ω

K(q, p, t)

)

×[exp(−2α2
0) cosh Θ1 + exp(−2α2

0 cos2 ϕ) sin Θ2], (63)

where
Nπ/2 = 2{1 + exp(−2α2

0 sin2 ϕ) sin[α2
0 sin(2ϕ)]}. (64)

Nonclassical features for this family of states are studied extensively in the literature (Ahmad
et al., 2011).
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4. Superposition of squeezed states

The investigation of the properties of squeezed state and its generation is also a central topic
in quantum optics since it enables us to utilize an optical field with reduced quadrature noise.
We introduce a squeeze operator as

b̂ = µâ + νâ†, (65)

where µ and ν obey
|µ|2 − |ν|2 = 1. (66)

As is the case of â and â†, this operator and its Hermitian conjugate satisfy the boson
commutation relation, [b̂, b̂†] = 1. Let us consider only real values for µ and ν on the purpose
to simplify the problem. Squeezed state |β〉 is the eigenstate of b̂:

b̂|β〉 = β|β〉. (67)

For convenience in further study, we introduce a squeezing parameter as d = µ/ν. Then, the
wave function of squeezed state in configuration space can be evaluated in terms of d using
Eq. (67):

〈q|β〉 = Nq exp

[

− q2

2ρ(t)h̄

(

Ω

2ρ(t)

d + 1
d − 1

− iǫ0eΛ(t) ρ̇(t)

)

+
dα + α∗

d − 1

√

Ω

h̄ρ2(t)
q

]

, (68)

where a normalization factor Nq is given by

Nq =

(

Ω

2ρ2(t)h̄π

d + 1
d − 1

)1/4

exp
(

− d + 1
d − 1

α2
0 cos2 ϕ + iδs,q(α, α∗)

)

, (69)

with an arbitrary real phase δs,q(α, α∗). Considering Eqs. (66) and (67), it is easy to show that
the eigenvalue β can be written in the form

β = µα + να∗. (70)

Now we represent β as
β = β0eiϕβ , (71)

where β0 and ϕβ. are real. Execution of an algebra with the substitution of Eq. (46) into Eq.
(70) yields

β0 = α0

√

µ2 + ν2 + 2µν cos(2ϕ), (72)

ϕβ = tan−1
(

d − 1
d + 1

tan ϕ

)

. (73)

Let us take δs,q(α, α∗) in the form

δs,q(α, α∗) = −α2
0 sin ϕ cos ϕ. (74)
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Then, Eq. (68) reduces to a simple form which is

〈q|β〉 =
(

Ω

2πh̄ρ2(t)

d + 1
d − 1

)1/4

exp

[

− 1
2ρ(t)h̄

(

Ω

2ρ(t)

d + 1
d − 1

− iǫ0eΛ(t) ρ̇(t)

)

q2

+
dα + α∗

d − 1

(√

Ω

h̄ρ2(t)
q − α0 cos ϕ

)]

. (75)

The squeezed state which have this wave function belongs to a nonclassical state. If
we recall that any non-commuting observables in quantum mechanics can be determined
simultaneously in classical mechanics with any order of precision, classical analogue for
squeezing is unthinkable.

A superposition of squeezed states may also be useful in understanding nonclassical features
of quantum states. Let us consider the superposition of 〈q|β〉 and 〈q|β∗〉 with an arbitrary
relative phase φ. The wave function for this system is given by

〈q|Ψ(t)〉 = 1√
N

(〈q|β0eiϕβ 〉+ eiφ〈q|β0e−iϕβ 〉), (76)

where N is a normalization constant of the form

N = 2
[

1 + exp
(

−2(d − 1)
d + 1

α2
0 sin2 ϕ

)

cos[α2
0 sin(2ϕ)− φ]

]

. (77)

Substituting Eq. (75) into Eq. (76) and, then, executing some algebra results in

〈q|Ψ(t)〉 =
(

Ω

2ρ2(t)h̄π

d + 1
d − 1

)1/4 2√
N

exp

[

− 1
2ρ(t)h̄

(

Ω

2ρ(t)

d + 1
d − 1

− iǫ0eΛ(t) ρ̇(t)

)

q2

+
(d + 1)α0 cos ϕ

d − 1

(√

Ω

h̄ρ2(t)
q − α0 cos ϕ

)

+
iφ

2

]

× cos

[

α0 sin ϕ

(√

Ω

h̄ρ2(t)
q − α0 cos ϕ

)

− φ

2

]

. (78)

Figures 6 and 7 are probability densities, |〈q|Ψ(t)〉|2, with the squeezing for q-quadrature
and for p-quadrature, respectively. By comparing these with Fig. 4, we see that the width of
densities are narrowed for the squeezing for q-quadrature and broadened for p-quadrature.
Thus the uncertainty of q is reduced for the case of the squeezing for q-quadrature, while
increased for p-quadrature. Therefore, through application of squeezed states, we are
able to reduce noise dispersion in one quadrature at the expense of increased noise in the
complementary quadrature as compared with that of coherent state. For this reason, squeezed
states of light can be applied to high precision interferometer that provides high resolutions
in measurement beyond the standard limits.

All wave functions that are given in Eqs. (32)[or (33)], (53), (57), (75), and (78) satisfy
Schrödinger equation when supplemented by some time-dependent phase factors suitable
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Fig. 6. Probability density for superposition of squeezed states as a function of q and t. The
value of γ is 0.1 for (a) and 0.3 for (b). The same values as that of Fig. 4 are used except for
d = 2.

for each. The phase (factor) for number state is given in Eq. (34) and that for other wave
functions can also be derived from the same method as that of the number state (Choi, 2011).

The quantum wave functions have no reality of their own and are just associated with the
probability to find photon in a certain domain as mentioned previously. The mathematical
description in classical optics for the interference in phase space is very similar to that in
quantum optics, but the classically represented optical waves have a real character.
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Fig. 7. Probability density for superposition of squeezed states as a function of q and t. The
value of γ is 0.1 for (a) and 0.3 for (b). The same values as that of Fig. 4 are used except for
d = −2.

Using the same method as that of previous section, the WDF that corresponds to Eq. (78) is
evaluated to be

W(q, p, t) =
2

πh̄N exp
(

− 2
h̄Ω

Ks(q, p, t)

)

× exp

[

d + 1
d − 1

(

2

√

Ω

h̄ρ2(t)
qα0 cos ϕ − 2α2

0 cos2 ϕ

)]

×
[

exp
(

− d − 1
d + 1

2α2
0 sin2 ϕ

)

cosh
(

d − 1
d + 1

Θ1

)

+ cos(Θ2 − φ)

]

, (79)
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where

Ks(q, p, t) =
Ω2

4ρ2(t)

d + 1
d − 1

q2 +
d − 1
d + 1

[ρ(t)p − ǫ0eΛ(t) ρ̇(t)q]2. (80)

The WDF with squeezing is plotted in Fig. 8: (a) corresponds to squeezing for q-quadrature

Fig. 8. Quadrature plot of WDF for superposition of squeezed states with d = 3 for (a) and
d = −2 for (b). All values used here are the same as those in Fig. 5.

and (b) for p-quadrature. The width of two bells is shortened along the direction of q for (a)
and shortened along the direction of p for (b) when they are compared to that of coherent state
shown in Fig. 5.
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We can represent the position of two bells in polar coordinate as (α0,±ϕ) (Schleich et al., 1991).
For ϕ = 0 and ϕ = π, the two bells overlap: There are no interferences in this case, but
are quantum transitions between two different quantum states overlapped (Dragoman, 2001).
On the other hand, for ϕ = π/2, they are separated from each other with maximum distance.
The microscopical pattern of the structure of interference is directly related to the value of
φ. Of course, these rules mentioned in this paragraph are equally applied to the case of the
superposition of coherent state.

The WDF plays a crucial role in analyzing nonclassical characteristics of quantum states.
You can confirm the nonclassical features for the superposed squeezed states from negative
values in interference structure displayed in Fig. 8, which are very similar to that of previous
section. The methods for interpreting quantum superpositions are different from that for
simple addition of probability distributions, because, in quantum mechanics, we deal with
superpositions of probability amplitudes instead of those of probabilities themselves. This
is closely related to the appearance of interference terms in the distribution functions of
probability. The novel effects of nonclassical states that admits no analogue in classical
mechanics have drawn special attention both in theoretical and experimental physics thanks
to their applicability in modern technology employing optical and/or other dynamical
systems (Ourjoumtsev et al, 2006).

The development of modern technology in experimental photon engineering have made it
possible to produce Schrödinger cat states and/or kitten states (small Schrödinger cat states)
on the basis of effective nonlinear operations that can be realized via projective measurements
and post-selection. Projective measurements based on the Hilbert space formulation of
quantum theory produce complete determinations of the post-measurement states through
the projection-valued measures of a Hermitian operator (von Neumann, 1932). Kitten states
can be produced by squeezing a single-photon. An interesting and useful way to obtain
a squeezed single-photon is subtracting one photon from a single-mode squeezed vacuum
beam generated by an optical nonlinear process, so-called degenerate optical parametric
down-conversion (Ourjoumtsev et al., 2006). A sufficiently large Schrödinger cat states with a
smaller overlap between two constituent states can be created by subtracting multiphoton
from a squeezed vacuum beam (Neergaard-Nielsen et al., 2011). Other methods for
preparation of superposition states include a squeezed Schrödinger cat state prepared by
conditional homodyning of a two-photon Fock state (Ourjoumtsev et al., 2007), high-fidelity
superposition states prepared using cavity QED technology (de Queirós et al., 2007), and
preparation of entangled non-local superposition states (Ourjoumtsev et al., 2009).

5. Conclusion

Nonclassical features of superpositions of coherent states and squeezed states for
electromagnetic field in linear media whose electromagnetic parameters vary with time
are examined. The expansion of Maxwell equations in charge-source free medium gives
second order differential equations for both position function u(r) and time function q(t).
The Hamiltonian associated with the classical equation of motion for q(t) varies with time.
Among several methods that are useful in managing time-dependent Hamiltonian systems,
the quantum invariant operator method is used in order to solve quantum solutions of the
system. The annihilation and the creation operators related to quantum invariant operator
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satisfy boson commutation relation. The wave functions in number state are derived by taking
advantage of the annihilation and the creation operators.

Coherent state is obtained from the expansion of the wave functions of number state. By
solving the eigenvalue equation of squeeze operator, squeezed state is also obtained. We
can confirm from Figs. 4, 6 and 7, that the detailed structure of probability densities for
superposition states are somewhat complicated due to the interference between the two
component states. We cannot observe nonclassical properties of the coherent state from WDF,
because the value of WDF for a single coherent state is always positive. However, a minor
nonclassicality of the coherent state has been reported (Johansen, 2004): A particular quantum
distribution function for the coherent state of simple harmonic oscillator, the so-called
Margenau-Hill distribution, can take negative values in some regions, but the negative values
are relatively very small. This appearance reflects the nonclassicality demonstrated in weak
measurements which are, in general, performed under the situation where the coupling of a
measuring device to the measured system is very weak. The average values obtained from
the weak measurement reveal a time-symmetric dependence on initial and final conditions
(Shikano & Hosoya, 2010), providing a natural definition of conditional probabilities in
quantum mechanics and, consequently, enabling a more complete description for quantum
statistics. However, the interpretation of the results of weak measurements is somewhat
controversial on account of its peculiar feature that the measured (weak) value can take
strange ones which are outside the range of the eigenvalues of a target observable and may
even be complex. The detailed analysis of the strange features of weak measurements may
provide a better understanding for the essential differences between quantum and classical
statistics.

From Figs. 5 and 8, we can see the interference structure produced between the two main
bells. If we consider Eqs. (38) and (39), this determines the pattern of interference fringe
in real space of q and p. Though two main bells are always positive, interference structure
takes positive and negative values in turn, where the appearance of the negative values
is an important signal for the nonclassicality of the system. In fact, nonclassical quantum
states are general and ubiquitous. Not only any pure state of the harmonic oscillator can
be represented in terms of nonclassical quantum states but also even the number state is a
class of nonclassical quantum states (Kis et al., 2001). Nonclassical states in physical fields
such as various optical systems, ion motion in a Paul trap, and quantum dot can be applied
to fundamental problems in modern technology ranging from high-resolution spectroscopy to
low-noise communication and quantum information processing (Kis et al., 2001). In particular,
nonclassical properties of correlated quantum systems are expected to play the key role to
overcome some limitations relevant to information processing in classical computer system
and classical communication.
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