3,646 research outputs found

    A Novel On-chip Three-dimensional Micromachined Calorimeter with Fully Enclosed and Suspended Thin-film Chamber for Thermal Characterization of Liquid Samples

    Get PDF
    A microfabricated calorimeter (μ-calorimeter) with an enclosed reaction chamber is presented. The 3D micromachined reaction chamber is capable of analyzing liquid samples with volume of 200 nl. The thin film low-stress silicon nitride membrane is used to reduce thermal mass of the calorimeter and increase the sensitivity of system. The μ-calorimeter has been designed to perform DC and AC calorimetry, thermal wave analysis, and differential scanning calorimetry. The μ-calorimeter fabricated with an integrated heater and a temperature sensor on opposite sides of the reaction chamber allows to perform thermal diffusivity and specific heat measurements on liquid samples with same device. Measurement results for diffusivity and heat capacitance using time delay method and thermal wave analysis are presented

    DNA-linked nanoparticle building blocks for nanostructure assembly and methods of producing the same

    Get PDF
    A method of producing a nanoparticle assembly. The method includes attaching a first DNA molecule to a bead to form a first DNA-bead complex; and combining a nanoparticle with the first DNA-bead complex to form a nanoparticle-DNA-bead complex having one DNA molecule attached to the nanoparticle

    NOD2/RICK-dependent β-defensin 2 regulation is protective for nontypeable Haemophilus influenzae-induced middle ear infection.

    Get PDF
    Middle ear infection, otitis media (OM), is clinically important due to the high incidence in children and its impact on the development of language and motor coordination. Previously, we have demonstrated that the human middle ear epithelial cells up-regulate β-defensin 2, a model innate immune molecule, in response to nontypeable Haemophilus influenzae (NTHi), the most common OM pathogen, via TLR2 signaling. NTHi does internalize into the epithelial cells, but its intracellular trafficking and host responses to the internalized NTHi are poorly understood. Here we aimed to determine a role of cytoplasmic pathogen recognition receptors in NTHi-induced β-defensin 2 regulation and NTHi clearance from the middle ear. Notably, we observed that the internalized NTHi is able to exist freely in the cytoplasm of the human epithelial cells after rupturing the surrounding membrane. The human middle ear epithelial cells inhibited NTHi-induced β-defensin 2 production by NOD2 silencing but augmented it by NOD2 over-expression. NTHi-induced β-defensin 2 up-regulation was attenuated by cytochalasin D, an inhibitor of actin polymerization and was enhanced by α-hemolysin, a pore-forming toxin. NOD2 silencing was found to block α-hemolysin-mediated enhancement of NTHi-induced β-defensin 2 up-regulation. NOD2 deficiency appeared to reduce inflammatory reactions in response to intratympanic inoculation of NTHi and inhibit NTHi clearance from the middle ear. Taken together, our findings suggest that a cytoplasmic release of internalized NTHi is involved in the pathogenesis of NTHi infections, and NOD2-mediated β-defensin 2 regulation contributes to the protection against NTHi-induced otitis media

    Biomarkers of Oxidative Stress and Endogenous Antioxidants for Patients with Chronic Subjective Dizziness

    Get PDF
    As a neurotologic disorder of persistent non-vertiginous dizziness, chronic subjective dizziness (CSD) arises unsteadily by psychological and physiological imbalance. The CSD is hypersensitivity reaction due to exposure to complex motions visual stimuli. However, the pathophysiological features and mechanism of the CSD still remains unclearly. The present study was purposed to establish possible endogenous contributors of the CSD using serum samples from patients with the CSD. A total 199 participants were gathered and divided into two groups; healthy (n = 152, male for 61, and female for 91) and CSD (n = 47, male for 5, female for 42), respectively. Oxidative stress parameters such as, hydrogen peroxide and reactive substances were significantly elevated (p < 0.01 or p < 0.001), whereas endogenous antioxidant components including total glutathione contents, and activities of catalase and superoxide dismutase were significantly deteriorated in the CSD group (p < 0.01 or p < 0.001) as comparing to the healthy group, respectively. Serum levels of tumor necrosis factor -α and interferon-γ were significantly increased in the CSD participants (p < 0.001). Additionally, emotional stress related hormones including cortisol, adrenaline, and serotonin were abnormally observed in the serum levels of the CSD group (p < 0.01 or p < 0.001). Our results confirmed that oxidative stress and antioxidants are a critical contributor of pathophysiology of the CSD, and that is first explored to establish features of redox system in the CSD subjects compared to a healthy population

    A Design Method of Distributed Algorithms via Discrete-time Blended Dynamics Theorem

    Full text link
    We develop a discrete-time version of the blended dynamics theorem for the use of designing distributed computation algorithms. The blended dynamics theorem enables to predict the behavior of heterogeneous multi-agent systems. Therefore, once we get a blended dynamics for a particular computational task, design idea of node dynamics for individual heterogeneous agents can easily occur. In the continuous-time case, prediction by blended dynamics was enabled by high coupling gain among neighboring agents. In the discrete-time case, we propose an equivalent action, which we call multi-step coupling in this paper. Compared to the continuous-time case, the blended dynamics can have more variety depending on the coupling matrix. This benefit is demonstrated with three applications; distributed estimation of network size, distributed computation of the PageRank, and distributed computation of the degree sequence of a graph, which correspond to the coupling by doubly-stochastic, column-stochastic, and row-stochastic matrices, respectively

    Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity

    Get PDF
    AbstractChrysin is a natural, biologically active compound extracted from many plants, honey and propolis. It possesses potent anti-inflammation, anti-cancer and anti-oxidation properties. The mechanism by which chrysin suppresses COX-2 expression remains poorly understood. In the present report, we investigated the effect of chrysin on the expression of COX-2 in lipopolysaccharide (LPS)-activated Raw 264.7 cells. Chrysin significantly suppressed the LPS-induced COX-2 protein and mRNA expression in a dose-dependent manner. The ability of chrysin to suppress the expression of the COX-2 was investigated using luciferase reporters controlled by various cis-elements in COX-2 promoter region. Mutational analysis and electrophoretic mobility shift assay verified that nuclear factor for IL-6 was identified as responsible for the chrysin-mediated COX-2 downregulation. These results will provide new insights into the anti-inflammatory and anti-carcinogenic properties of chrysin

    FEASIBILITY OF BREWING MAKGEOLLI (TURBID RICE WINE) USING PARTIALLY GELATINIZED WHEAT FLOUR AND TAPIOCA FLOUR

    Get PDF
    Makgeolli is made from cooked rice or wheat, then brewed with nuruk (Korean fermentation starter) for several days. But, nowadays, attempts have been made to use various raw materials and process innovations to make makgeolli for particular purposes.  This study aimed to evaluate the quality of makgeolly made from partially gelatinized wheat flour and tapioca flour. Five different combination of wheat flour and tapioca flour were used to manufacture makgeolli. The results showed that different combination of partially gelatinized wheat flour and tapioca flour significantly affected the chemical and sensorial characteristics of makgeolli. Increasing proportion of wheat flour produced higher level of total acid, amino acidity, reducing sugar and total solid of makgeolli. Inversely, alcohol content was higher when higher level of tapioca flour was used. In general, sensorial characteristics of makgeolli made from partially gelatinized wheat flour and tapioca flour didn’t acceptable by panelists. Thus, brewing makgeolli by using partially gelatinized wheat flour and tapioca flour isn’t acceptable in term of sensorial characteristics

    An Active and Soft Hydrogel Actuator to Stimulate Live Cell Clusters by Self-folding

    Get PDF
    The hydrogels are widely used in various applications, and their successful uses depend on controlling the mechanical properties. In this study, we present an advanced strategy to develop hydrogel actuator designed to stimulate live cell clusters by self-folding. The hydrogel actuator consisting of two layers with different expansion ratios were fabricated to have various curvatures in self-folding. The expansion ratio of the hydrogel tuned with the molecular weight and concentration of gel-forming polymers, and temperature-sensitive molecules in a controlled manner. As a result, the hydrogel actuator could stimulate live cell clusters by compression and tension repeatedly, in response to temperature. The cell clusters were compressed in the 0.7-fold decreases of the radius of curvature with 1.0 mm in room temperature, as compared to that of 1.4 mm in 37 degrees C. Interestingly, the vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein-2 (IGFBP-2) in MCF-7 tumor cells exposed by mechanical stimulation was expressed more than in those without stimulation. Overall, this new strategy to prepare the active and soft hydrogel actuator would be actively used in tissue engineering, drug delivery, and micro-scale actuators
    corecore