1,755 research outputs found

    UV-LIGA micro-fabrication of inertia type electrostatic transducers and their application

    Get PDF
    This dissertation discusses the design, working principles, static & dynamic analysis and simulation, mechanics of material, applied MEMS technology, micro-fabrication, and experimental testing of two types of micro-transducers: micro-power relay and micro-accelerometer. Several possible design concepts were proposed, and the advantages and disadvantages of electrostatic working principles were also discussed. Transducers presented in this research used electrostatic force as a driving force in the micro-relay and capacitance as a sensing parameter in the micro-accelerometer. There was an analogy between the micro-relay and the micro-accelerometer in their theoretical approach and fabrication processes. The proposed micro-transducers (micro-relay and micro-accelerometer) were fabricated using UV lithograph of SU-8 & SPR and UV-LIGA process. The advantages and disadvantages of these processes were discussed. The micro-relays fabricated by UV-LIGA technology had the following advantages compared with other reported relays: fast switching speed, high power capacity, high off-resistance, lower on-resistance, low power consumption, and low heat generation. The polymer-based micro-accelerometers were designed and fabricated. Instead of applying SU-8 only as a photo resist, cured SU-8 was used as the primary structural material in fabricating the micro-accelerometers. The great flexibility in size and aspect ratio of cured SU-8 made it feasible to produce highly sensitive accelerometers. The prototype micro-relays and micro-accelerometers were tested for the dynamic characteristics and power capacity. The experimental results in micro-relays had confirmed that reasonably large current capacity and fast response speed was able to be achieved using electromagnetic actuation and the multilayer UV-LIGA fabrication process

    Identification of predictive variables for the recurrence of oral mucocele

    Get PDF
    Oral mucocele is the most common minor salivary gland lesion with good prognosis after surgical removal. However, its recurrence is not rare, sometimes bothersome. This study aimed to identify the possible predictive variables affecting the recurrence rate of oral mucocele. The histoclinical data of 164 patients diagnosed with oral mucocele were retrospectively obtained by reviewing dental records. The predictive variables for its recurrence were identified by analyzing its recurrence rate according to clinical variables. The recurrence rate showed the significant differences according to location and age. Oral mucocele recurred with significantly higher frequency on the ventral mucosa of tongue (50.0%) than on the labial/buccal mucosa (8.8%). Its recurrence was significantly more common in the younger patients (aged 30 years, 4.4%). However, there was no significant difference in recurrence rates between surgical procedures using scalpels and those using lasers. Patients with oral mucocele should be more carefully informed of its possible recurrence, especially when it is found on the ventral surface of the tongue or in a younger population

    Tip-Enhanced Raman Scattering Imaging of Two-Dimensional Tungsten Disulfide with Optimized Tip Fabrication Process

    Get PDF
    We successfully achieve the tip-enhanced nano Raman scattering images of a tungsten disulfide monolayer with optimizing a fabrication method of gold nanotip by controlling the concentration of etchant in an electrochemical etching process. By applying a square-wave voltage supplied from an arbitrary waveform generator to a gold wire, which is immersed in a hydrochloric acid solution diluted with ethanol at various ratios, we find that both the conical angle and radius of curvature of the tip apex can be varied by changing the ratio of hydrochloric acid and ethanol. We also suggest a model to explain the origin of these variations in the tip shape. From the systematic study, we find an optimal condition for achieving the yield of similar to 60% with the radius of similar to 34 nm and the cone angle of similar to 35 degrees. Using representative tips fabricated under the optimal etching condition, we demonstrate the tip-enhanced Raman scattering experiment of tungsten disulfide monolayer grown by a chemical vapor deposition method with a spatial resolution of similar to 40 nm and a Raman enhancement factor of similar to 4,760. © The Author(s) 2017

    Properties Of Analyst Forecasts And Bond Underwriting Relationship: Evidence From Korea

    Get PDF
    Previous studies find that analysts forecast earnings more optimistically but inaccurately when they face the conflict of interest (COI). We extend this line of research by examining whether analysts’ forecasting behavior affected by the mere existence of potential COI are related with underwriting contracts.We document that analysts affiliated with security companies that become underwriters ex post issue more optimistic but less accurate forecasts for firms to issue bonds in Korea. We also find that firms to issue bonds are likely to award underwriting contracts to security companies with analysts who issue more optimistic but less accurate forecasts.  

    Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel bundle for SFR

    Get PDF
    AbstractThree-dimensional flow phenomena in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor, Monju, were investigated with a numerical analysis using a general-purpose commercial computational fluid dynamics code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-averaged Navier–Stokes flow simulation using a shear stress transport turbulence model. The main purpose of the current study is to understand the three-dimensional complex flow phenomena in a wire-wrapped fuel assembly to support the license issue for the core design. Computational fluid dynamics results show good agreement with friction factor correlation models. The secondary flow in the corner and edge subchannels is much stronger than that in an interior subchannel. The axial velocity averaged in the corner and edge subchannels is higher than that averaged in the interior subchannels. Three-dimensional multiscale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Behavior of the large-scale vortex structures in the corner and edge subchannels is closely related to the relative position between the hexagonal duct wall and the helically wrapped wire spacer. The small-scale vortex is axially developed in the interior subchannels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and the wire spacer

    3D garment digitisation for virtual wardrobe using a commodity depth sensor

    Get PDF
    5-Aminovaleric acid (5AVA) is an important five-carbon platform chemical that can be used for the synthesis of polymers and other chemicals of industrial interest. Enzymatic conversion of L-lysine to 5AVA has been achieved by employing lysine 2-monooxygenase encoded by the davB gene and 5-aminovaleramidase encoded by the davA gene. Additionally, a recombinant Escherichia coli strain expressing the davB and davA genes has been developed for bioconversion of L-lysine to 5AVA. To use glucose and xylose derived from lignocellulosic biomass as substrates, rather than L-lysine as a substrate, we previously examined direct fermentative production of 5AVA from glucose by metabolically engineered E. coli strains. However, the yield and productivity of 5AVA achieved by recombinant E. coli strains remain very low. Thus, Corynebacterium glutamicum, a highly efficient L-lysine producing microorganism, should be useful in the development of direct fermentative production of 5AVA using L-lysine as a precursor for 5AVA. Here, we report the development of metabolically engineered C. glutamicum strains for enhanced fermentative production of 5AVA from glucose.Various expression vectors containing different promoters and origins of replication were examined for optimal expression of Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. Among them, expression of the C. glutamicum codon-optimized davA gene fused with His-Tag at its N-Terminal and the davB gene as an operon under a strong synthetic H promoter (plasmid p36davAB3) in C. glutamicum enabled the most efficient production of 5AVA. Flask culture and fed-batch culture of this strain produced 6.9 and 19.7\ua0g/L (together with 11.9\ua0g/L glutaric acid as major byproduct) of 5AVA, respectively. Homology modeling suggested that endogenous gamma-aminobutyrate aminotransferase encoded by the gabT gene might be responsible for the conversion of 5AVA to glutaric acid in recombinant C. glutamicum. Fed-batch culture of a C. glutamicum gabT mutant-harboring p36davAB3 produced 33.1\ua0g/L 5AVA with much reduced (2.0\ua0g/L) production of glutaric acid.Corynebacterium glutamicum was successfully engineered to produce 5AVA from glucose by optimizing the expression of two key enzymes, lysine 2-monooxygenase and delta-aminovaleramidase. In addition, production of glutaric acid, a major byproduct, was significantly reduced by employing C. glutamicum gabT mutant as a host strain. The metabolically engineered C. glutamicum strains developed in this study should be useful for enhanced fermentative production of the novel C5 platform chemical 5AVA from renewable resources
    • …
    corecore