82 research outputs found

    Cross-country comparison of parental reports and objective measures of sleep patterns of typically developing children and autistic children between the UK and South Korea

    Get PDF
    Sleep duration and disturbances in typically developing (TD) children have been found to vary across countries. Given the impact of culture on sleep patterns in TD children, it is also necessary to examine the impact of culture on sleep patterns in children with atypical development. However, previous studies have often relied only on parent reports of children's sleep. Hence, the present study conducted a cross-cultural comparison of sleep duration and disturbances of school-aged TD children and autistic children in the UK and South Korea (hereafter Korea) using both subjective and objective sleep measurements. Cultural differences were observed in both actigraphy measures and parent reports of children's sleep duration and disturbances. Both TD children and autistic children in Korea had a later bedtime, later getting up time and shorter nocturnal sleep duration than their peers in the UK (p < .05). Furthermore, greater parent-reported sleep disturbances were reported in TD children in Korea compared to TD children in the UK and in autistic children in the UK compared to autistic children in Korea. Correlational analyses indicated that most parent-reported measures of children's sleep did not significantly correlate with objective measures and child reports, suggesting that studies on children's sleep can benefit by collecting data from multiple sources. Taken together, these findings suggest a cultural influence on sleep duration and disturbances of both TD children and autistic children. This study raises questions for further research to identify factors underlying cultural differences in children's sleep duration and disturbances

    Interplay between Topological States and Rashba States as Manifested on Surface Steps at Room Temperature

    Full text link
    The unique spin texture of quantum states in topological materials underpins many proposed spintronic applications. However, realizations of such great potential are stymied by perturbations, such as temperature and local fields imposed by impurities and defects, that can render a promising quantum state uncontrollable. Here, we report room-temperature observation of interaction between Rashba states and topological surface states, which manifests unique spin textures controllable by layer thickness of thin films. Specifically, we combine scanning tunneling microscopy/spectroscopy with the first-principles theoretical calculation to find the robust Rashba states coexisting with topological surface states along the surface steps with characteristic spin textures in momentum space. The Rashba edge states can be switched off by reducing the thickness of a topological insulator Bi2Se3 to bolster their interaction with the hybridized topological surface states. The study unveils a manipulating mechanism of the spin textures at room temperature, reinforcing the necessity of thin film technology in controlling quantum states

    Boundary Effects on Dynamic Behavior of Josephson-Junction Arrays

    Full text link
    The boundary effects on the current-voltage characteristics in two-dimensional arrays of resistively shunted Josephson junctions are examined. In particular, we consider both the conventional boundary conditions (CBC) and the fluctuating twist boundary conditions (FTBC), and make comparison of the obtained results. It is observed that the CBC, which have been widely adopted in existing simulations, may give a problem in scaling, arising from rather large boundary effects; the FTBC in general turn out to be effective in reducing the finite-size effects, yielding results with good scaling behavior. To resolve the discrepancy between the two boundary conditions, we propose that the proper scaling in the CBC should be performed with the boundary data discarded: This is shown to give results which indeed scale well and are the same as those from the FTBC.Comment: RevTex, Final version to appear in Phys. Rev.

    Generation and analysis of large-scale expressed sequence tags (ESTs) from a full-length enriched cDNA library of porcine backfat tissue

    Get PDF
    BACKGROUND: Genome research in farm animals will expand our basic knowledge of the genetic control of complex traits, and the results will be applied in the livestock industry to improve meat quality and productivity, as well as to reduce the incidence of disease. A combination of quantitative trait locus mapping and microarray analysis is a useful approach to reduce the overall effort needed to identify genes associated with quantitative traits of interest. RESULTS: We constructed a full-length enriched cDNA library from porcine backfat tissue. The estimated average size of the cDNA inserts was 1.7 kb, and the cDNA fullness ratio was 70%. In total, we deposited 16,110 high-quality sequences in the dbEST division of GenBank (accession numbers: DT319652-DT335761). For all the expressed sequence tags (ESTs), approximately 10.9 Mb of porcine sequence were generated with an average length of 674 bp per EST (range: 200–952 bp). Clustering and assembly of these ESTs resulted in a total of 5,008 unique sequences with 1,776 contigs (35.46%) and 3,232 singleton (65.54%) ESTs. From a total of 5,008 unique sequences, 3,154 (62.98%) were similar to other sequences, and 1,854 (37.02%) were identified as having no hit or low identity (<95%) and 60% coverage in The Institute for Genomic Research (TIGR) gene index of Sus scrofa. Gene ontology (GO) annotation of unique sequences showed that approximately 31.7, 32.3, and 30.8% were assigned molecular function, biological process, and cellular component GO terms, respectively. A total of 1,854 putative novel transcripts resulted after comparison and filtering with the TIGR SsGI; these included a large percentage of singletons (80.64%) and a small proportion of contigs (13.36%). CONCLUSION: The sequence data generated in this study will provide valuable information for studying expression profiles using EST-based microarrays and assist in the condensation of current pig TCs into clusters representing longer stretches of cDNA sequences. The isolation of genes expressed in backfat tissue is the first step toward a better understanding of backfat tissue on a genomic basis

    Examining the determinants of inward FDI: Evidence from Norway

    Get PDF
    This paper examines the impact of macroeconomic factors on foreign direct investment (FDI) inflows in Norway under the location-specific advantage. Using cointegrating regressions with Fully Modified OLS (FMOLS) and the vector autoregressive and error correction model (VAR/VECM) on quarterly data, the study finds that the real GDP, sector GDP, exchange rate and trade openness have a positive and significant impact on FDI inflows. However, money supply, inflation, unemployment and interest rate produced significantly negative results. The results imply that in seeking to promote a dynamic competitive advantage in the home country, governments need to pay more attention to their macroeconomic policies to help fashion and reduce production and transaction costs of MNEs

    Formation of environmentally stable hole-doped graphene films with instantaneous and high-density carrier doping via a boron-based oxidant

    Get PDF
    Large-area graphene films have substantial potential for use as next-generation electrodes because of their good chemical stability, high flexibility, excellent carrier mobility, and lightweight structure. However, various issues remain unsolved. In particular, high-density carrier doping within a short time by a simple method, and air stability of doped graphene films, are highly desirable. Here, we demonstrate a solution-based high-density (>1014 cm−2) hole doping approach that promises to push the performance limit of graphene films. The reaction of graphene films with a tetrakis(pentafluorophenyl)borate salt, containing a two-coordinate boron cation, achieves doping within an extremely short time (4 s), and the doped graphene films are air stable for at least 31 days. X-ray photoelectron spectroscopy reveals that the graphene films are covered by the chemically stable anions, resulting in an improved stability in air. Moreover, the doping reduces the transmittance by only 0.44 ± 0.23%. The simplicity of the doping process offers a viable route to the large-scale production of functional graphene electrodes

    Galectin-3C Inhibits Tumor Growth and Increases the Anticancer Activity of Bortezomib in a Murine Model of Human Multiple Myeloma

    Get PDF
    Galectin-3 is a human lectin involved in many cellular processes including differentiation, apoptosis, angiogenesis, neoplastic transformation, and metastasis. We evaluated galectin-3C, an N-terminally truncated form of galectin-3 that is thought to act as a dominant negative inhibitor, as a potential treatment for multiple myeloma (MM). Galectin-3 was expressed at varying levels by all 9 human MM cell lines tested. In vitro galectin-3C exhibited modest anti-proliferative effects on MM cells and inhibited chemotaxis and invasion of U266 MM cells induced by stromal cell-derived factor (SDF)-1α. Galectin-3C facilitated the anticancer activity of bortezomib, a proteasome inhibitor approved by the FDA for MM treatment. Galectin-3C and bortezomib also synergistically inhibited MM-induced angiogenesis activity in vitro. Delivery of galectin-3C intravenously via an osmotic pump in a subcutaneous U266 cell NOD/SCID mouse model of MM significantly inhibited tumor growth. The average tumor volume of bortezomib-treated animals was 19.6% and of galectin-3C treated animals was 13.5% of the average volume of the untreated controls at day 35. The maximal effect was obtained with the combination of galectin-3C with bortezomib that afforded a reduction of 94% in the mean tumor volume compared to the untreated controls at day 35. In conclusion, this is the first study to show that inhibition of galectin-3 is efficacious in a murine model of human MM. Our results demonstrated that galectin-3C alone was efficacious in a xenograft mouse model of human MM, and that it enhanced the anti-tumor activity of bortezomib in vitro and in vivo. These data provide the rationale for continued testing of galectin-3C towards initiation of clinical trials for treatment of MM

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
    corecore