11 research outputs found

    Iodinated Aluminum(III) Corroles with Long-Lived Triplet Excited States

    Get PDF
    The first reported iodination of a corrole leads to selective functionalization of the four C–H bonds on one pole of the macrocycle. An aluminum(III) complex of the tetraiodinated corrole, which exhibits red fluorescence, possesses a long-lived triplet excited state

    Tuning the Photophysical and Redox Properties of Metallocorroles by Iodination

    No full text
    Facile procedures were developed for selective iodination of aluminum and gallium corroles; crystallographic characterization shows that the main structural aspects are not changed (the macrocycle remains planar). Absorption maxima are red-shifted by 3–5 nm/iodine, singlet lifetimes are reduced to <80 ps, and emissions from long-lived excited states come into effect. The iodinated corroles display prompt fluorescence, phosphorescence, and delayed thermal fluorescence, all at room temperature. The effect on redox potentials appears to be additive for each additional iodine and, surprisingly, is practically identical to that of the other three halides. The conclusions of this work are of large importance for the design of metallocorroles that are best suited for the various applications where metallocorroles are used as catalysts and photosensitizers

    Tuning the Photophysical and Redox Properties of Metallocorroles by Iodination

    No full text
    Facile procedures were developed for selective iodination of aluminum and gallium corroles; crystallographic characterization shows that the main structural aspects are not changed (the macrocycle remains planar). Absorption maxima are red-shifted by 3–5 nm/iodine, singlet lifetimes are reduced to <80 ps, and emissions from long-lived excited states come into effect. The iodinated corroles display prompt fluorescence, phosphorescence, and delayed thermal fluorescence, all at room temperature. The effect on redox potentials appears to be additive for each additional iodine and, surprisingly, is practically identical to that of the other three halides. The conclusions of this work are of large importance for the design of metallocorroles that are best suited for the various applications where metallocorroles are used as catalysts and photosensitizers

    Intriguing Physical and Chemical Properties of Phosphorus Corroles

    No full text
    The fluorescence intensity of phosphorus corroles increases upon <i>meso</i>-aryl C–F/C–H and P–OH/P–F substitutions, the latter affects corrole-centered redox processes more than C–H/C–F substitution on the corrole’s skeleton, and the presence of F atoms allows for the first experimental insight into the electronic structures of oxidized corroles. Experimental and theoretical methodologies reveal that mono- but not bis-chlorosulfonation of the corrole skeleton is under kinetic control. Selective introduction of heavy atoms leads to complexes that are phosphorescent at room temperature

    Straightforward and Relatively Safe Process for the Fluoride Exchange of Trivalent and Tetravalent Group 13 and 14 Phthalocyanines

    No full text
    To avoid the use of hydrofluoric acid, a series of fluorinated trivalent and tetravalent metal-containing phthalocyanines (MPcs) were synthesized using a straightforward one-step halide substitution process using cesium fluoride (CsF) as the fluoride source and by reflux in N,N-dimethylformamide for less than an hour. The resulting fluoro MPcs were characterized and compared to the parent chloro MPcs. In some cases, very little change in properties was observed between the fluoro MPcs and the chloro MPcs. In other cases, such as fluoro aluminum phthalocyanine, a blue shift in the absorbance characteristics and an increase in oxidation and reduction potential of as much as 0.22 V was observed compared to the chloro derivative. Thermo gravimetric analysis was performed on all halo-MPcs, indicating that the choice of halo substitution on the axial position can have an effect on the decomposition or sublimation temperature of the final compound. After initial establishment and characterization of the fluoro MPcs, the halide substitution reaction of difluoro silicon phthalocyanine (F2-SiPc) was further explored by scaling the reaction up to a gram scale as well as considering tetrabutylammonium fluoride (TBAF) as an additional safe fluoride source. The scaled-up reactions producing F2-SiPc using CsF and TBAF as fluoride exchange sources were successfully reproducible, resulting in reaction yields of 100 and 73%, respectively. Both processes led to pure final products but results indicate that CsF, as the fluoride exchange reagent, appears to be the superior reaction process as it has a much higher yield

    Routescore: Punching the Ticket to More Efficient Materials Development

    No full text
    Self-driving labs, in the form of automated experimentation platforms guided by machine learning algorithms have emerged as a potential solution to the need for accelerated science. While new tools for automated analysis and characterization are being developed at a steady rate, automated synthesis remains the bottleneck in the chemical space accessible to self-driving labs. Combining automated and manual synthesis efforts immediately significantly expands the explorable chemical space. To effectively direct the different capabilities of automated (higher throughput and less labor) and manual synthesis (greater chemical versatility), we describe a protocol, the RouteScore, that quantifies the cost of combined synthetic routes. In this work, the RouteScore is used to determine the most efficient synthetic route to a well-known pharmaceutical (structure-oriented optimization), and to simulate a self-driving lab that finds the most easily synthesizable organic laser molecule with specific photophysical properties from a space of ~3500 possible molecules (property-oriented optimization). These two examples demonstrate the power and generality of our approach in mixed synthetic planning and optimization

    A Materials Acceleration Platform for Organic Laser Discovery

    No full text
    Conventional materials discovery is a laborious and time-consuming process that can take decades from initial conception of the material to commercialization. Recent developments in materials acceleration platforms promise to accelerate materials discovery using automation of experiments coupled with machine learning. However, most of the automation efforts in chemistry focus on synthesis and compound identification, with integrated target property characterization receiving less attention. In this work, we introduce an automated platform for the discovery of molecules as gain mediums for organic semiconductor lasers, a problem that has been challenging for conventional approaches. Our platform encompassed automated lego-like synthesis, product identification, and optical characterization that can be executed in a fully integrated end-to-end fashion. Using this workflow to screen organic laser candidates, we have discovered 8 potential candidates for organic lasers. We tested the lasing threshold of 4 molecules in thin-film devices and found 2 molecules with state-of-the-art performance. These promising results show the potential of automated synthesis and screening for accelerated materials development
    corecore