10 research outputs found

    Magnetic domains in SrFe12O19/Co hard/soft bilayers

    Get PDF
    ESRF (The european Synchrotron) User Meeting 2022, 7 - 9 February, 2022 . -- online meeting . -- https://www.esrf.fr/fr/home/events/conferences/2022/user-meeting-2022.html .-- Youtube access: https://www.youtube.com/playlist?list=PLsWatK2_NAmyYnkC-bXhvT70wsYaTmojqThe nature of the magnetic coupling between a SrFe12O19 particle (hard phase) and a Co layer grown on top (soft phase) has been studied by means of photoemission electron microscopy (PEEM) and spatially-resolved x-ray absorption (XAS) and magnetic circular dichroism (XMCD) at CIRCE, ALBA synchrotron (Spain). Our study reveals the soft metallic overlayer presents an in-plane magnetization despite the strong out-of-plane magnetocrystalline anisotropy of the hard platelet. Thus, the two phases show completely uncorrelated magnetic domain patterns. Micromagnetic simulations seem to indicate the degree of exchange-coupling is low or null, although the conditions for rigid coupling are a priori well met

    SYNTHESIS OF Cu-Ni NANOPARTICLES OF VARYING COMPOSITIONS

    Get PDF
    Namen diplomskega dela je bil ugotoviti, s katerim načinom sinteze lahko sintetiziramo magnetne nanodelce CuNi z ustrezno sestavo za nadaljnjo uporabo pri pripravi magnetnih tekočin, ki bi bile primerne za uporabo pri magnetni hipertermiji. S pomočjo rentgenske praškovne difrakcije (RPD) smo karakterizirali velikost nastalih nanodelcev zlitine in določili faze v vzorcih. Fizikalne lastnosti vzorcev (izgubo mase) smo, pri kontroliranem segrevanju, določili s termogravimetrično analizo (TGA). Magnetne lastnosti nastalih nanodelcev smo izmerili z suscepto-magnetometrom DSM — 10. Na koncu smo preučili še morfologijo delcev s transmisijskim elektronskim mikroskopom (TEM). Rezultati so pokazali, da je najprimernejša metoda za sintezo magnetnih nanodelcev CuNi z različnimi sestavami mehanokemijska metoda. Sintetizirani delci so kazali močne magnetne lastnosti. Čas mletja vpliva na velikost nastalih nanodelcev in stopnjo zreagiranosti reaktantov.The aim of this work was to determine, which way of synthesis is the most succesful for preparation of magnetic nanoparticles CuNi with suitable composition for further preparation of magnetic fluids, which can be used in magnetic hyperthermia. The size of magnetic nanoparticles was estimated with Scherrer equation. Samples were characterized with XRD analysis. Physical properties (loss of weight) of the samples were, during controlled heating, measured with termogravimetric analysis (TGA). Magnetic properties of the samples were measured with DSM – 10 magnetometer. At the end we studied morphology of the synthesized nanoparticles with transmission electronic microscope (TEM). The results showed that the most suitable method of synthesis of magnetic nanoparticles CuNi with varying composition is mechanochemical method. Synthesized nanoparticles were strongly magnetic. Time of milling has effect on size of synthesized nanoparticles

    On the potential of hard ferrite ceramics for permanent magnet technology-a review on sintering strategies

    No full text
    [EN] A plethora of modern technologies rely on permanent magnets for their operation, including many related to the transition towards a sustainable future, such as wind turbines or electric vehicles. Despite the overwhelming superiority of magnets based on rare-earth elements in terms of the magnetic performance, the harmful environmental impact of the mining of these raw materials, their uneven distribution on Earth and various political conflicts among countries leave no option but seeking for rare-earth-free alternatives. The family of the hexagonal ferrites or hexaferrites, and in particular the barium and strontium M-type ferrites (BaFe12O19 and SrFe12O19), are strong candidates for a partial rare-earth magnets substitution, and they are indeed successfully implemented in multiple applications. The manufacturing of hexaferrites into dense pieces (i.e. magnets) meeting the requirements of the specific application (e.g. magnetic and mechanical properties, shape) is not always straightforward, which has in many cases hampered the actual substitution at the industrial level. Here, past and on-going research on hexaferrites sintering is reviewed with a historical perspective, focusing on the challenges encountered and the solutions explored, and correlating the sintering approaches with the magnetic performance of the resulting ceramic magnet.This work is supported by the European Commission through the H2020 project with Grant agreement H2020-NMBP-2016-720853 (AMPHIBIAN) and by the Spanish Ministerio de Ciencia, Innovación y Universidades (RTI2018-095303-A-C52). C G M acknowledges financial support from Spanish Ministerio de Ciencia e Innovación (MICINN) through the 'Juan de la Cierva' Program (FJC2018-035532-I). Financial support from the Slovenian Research Agency (research core funding No. P2-0087) is acknowledged

    The Future of Permanent-Magnet-Based Electric Motors: How Will Rare Earths Affect Electrification?

    No full text
    In this review article, we focus on the relationship between permanent magnets and the electric motor, as this relationship has not been covered in a review paper before. With the increasing focus on battery research, other parts of the electric system have been neglected. To make electrification a smooth transition, as has been promised by governing bodies, we need to understand and improve the electric motor and its main component, the magnet. Today’s review papers cover only the engineering perspective of the electric motor or the material-science perspective of the magnetic material, but not both together, which is a crucial part of understanding the needs of electric-motor design and the possibilities that a magnet can give them. We review the road that leads to today’s state-of-the-art in electric motors and magnet design and give possible future roads to tackle the obstacles ahead and reach the goals of a fully electric transportation system. With new technologies now available, like additive manufacturing and artificial intelligence, electric motor designers have not yet exploited the possibilities the new freedom of design brings. New out-of-the-box designs will have to emerge to realize the full potential of the new technology. We also focus on the rare-earth crisis and how future price fluctuations can be avoided. Recycling plays a huge role in this, and developing a self-sustained circular economy will be critical, but the road to it is still very steep, as ongoing projects show

    Ferrite-Based Magnets by High Pressure Consolidation

    No full text
    M-type hexaferrite magnets constitute together the rare-earth magnets the most employed magnets in the world. Even if ferrite magnets have smaller energy product and lower magnetization saturation than rare-earth permanent magnets (PMs), currently ferrite magnets represent the most widely used PMs, covering 80% of the PM market production [1,2]. Recently, a strong effort is being performed to improve the magnetic properties of ferrites with the scope of substituting partially rare-earth magnets. Most of the strategies involve the nanostructuration of the ferrites and/or the development of hybrid compounds [3]. A bottleneck for the production of these magnets is that standard sintering process requires high temperatures and oxidizing atmosphere that produces the destruction of the nanostructure and several chemical changes. Different novel strategies as out-of-equilibrium or cold sintering processes are mainly considered[2,4]. In our presentation we will show the production of dense ferrite-based magnets by high pressure multi-Anvil press at low temperatures. This press applies quasi-isotropic pressures in the range up to 20 GPa and temperatures up to 1200°C. We demonstrate that the consolidation of micrometric hexaferrite (SrFe12O19) powders is possible at temperatures below 1000°C, below the standard sintering temperatures. In addition, dense hybrid magnets were obtained composed of micrometric hexaferrites and soft high magnetization metal Fe or FeCo NPs applying pressures up to 6 GPa and low temperatures (250°C). A deep study, including structural, morphological and magnetic characterizations, has been performed to determine the influence of the temperature and pressure consolidation conditions in the properties of these novel magnets. Magnetic characterizations show that hybrid magnets exhibit larger magnetization than ferrites and single step hysteresis loops. Single Point Detection characterizations indicate that the anisotropy field of the hybrid magnets is similar to that of the ferrite magnets. These results suggest that the two moieties componing the high pressure consolidated magnets have similar properties than the original micro and nano powders, but they are magnetic coupled during the reversal process. High pressure consolidation appears as a promising technique to obtain nano-based metal-oxide hybrid magnets with promising hard properties
    corecore