32 research outputs found
Herpes-Virus Infection in Patients with Langerhans Cell Histiocytosis: A Case-Controlled Sero-Epidemiological Study, and In Situ Analysis
BACKGROUND: Langerhans cell histiocytosis (LCH) is a rare disease that affects mainly young children, and which features granulomas containing Langerhans-type dendritic cells. The role of several human herpesviruses (HHV) in the pathogenesis of LCH was suggested by numerous reports but remains debated. Epstein-barr virus (EBV, HHV-4), & Cytomegalovirus (CMV, HHV-5) can infect Langerhans cells, and EBV, CMV and HHV-6 have been proposed to be associated with LCH based on the detection of these viruses in clinical samples. METHODOLOGY: We have investigated the prevalence of EBV, CMV and HHV-6 infection, the characters of antibody response and the plasma viral load in a cohort of 83 patients and 236 age-matched controls, and the presence and cellular localization of the viruses in LCH tissue samples from 19 patients. PRINCIPAL FINDINGS: The results show that prevalence, serological titers, and viral load for EBV, CMV and HHV-6 did not differ between patients and controls. EBV was found by PCR in tumoral sample from 3/19 patients, however, EBV small RNAs EBERs -when positive-, were detected by in situ double staining in bystander B CD20+ CD79a+ lymphocytes and not in CD1a+ LC. HHV-6 genome was detected in the biopsies of 5/19 patients with low copy number and viral Ag could not be detected in biopsies. CMV was not detected by PCR in this series. CONCLUSIONS/SIGNIFICANCE: Therefore, our findings do not support the hypothesis of a role of EBV, CMV, or HHV-6 in the pathogenesis of LCH, and indicate that the frequent detection of Epstein-barr virus (EBV) in Langerhans cell histiocytosis is accounted for by the infection of bystander B lymphocytes in LCH granuloma. The latter observation can be attributed to the immunosuppressive micro environment found in LCH granuloma
Generation of realistic synthetic catchments to explore fine continental surface processes
International audienceUnderstanding, analysing, and predicting the erosion mechanisms and sedimentary flows produced by catchments plays a key role in environmental conservation and restoration management and policies. Numerical case-testing studies are generally undertaken to analyse the sensitivity of flood and soil erosion processes to the physical characteristics of catchments. Most analyses are conducted on simple virtual catchments with physical characteristics that, unlike real catchments, are perfectly controlled. Virtual catchments generally correspond to V-shaped valley catchments. However, although these catchments are suitable for methodical analysis of the results, they do not provide a realistic representation of the spatial structures of the landscape and field conditions. They can, therefore, lead to potential modelling errors and can make it difficult to extend or generalize their results. Our proposed method bridges the gap between real and traditional virtual catchments by creating realistic virtual catchments with perfectly controllable physical characteristics. Our approach represents a real alternative to traditional test case procedures and provides a new framework for geomorphological and hydrological communities. It combines a field procedural generation approach, geographic information system processing procedures, and the CAESAR-Lisflood landscape evolution model. We illustrate how each of these components acts in the process of generating virtual catchments. Five physical parameters were adjusted and tested for each virtual catchment: drainage density, hypsometric integral, mean slope of the main channel, granulometry, and land use. One of our virtual catchments is compared with a real catchment and a virtual catchment produced by a standard method. This comparison indicates that our approach can produce more realistic virtual catchments than those produced by more traditional methods, while a high degree of controllability is maintained. This new method of generating virtual catchments therefore offers significant research potential to identify the impacts of the physical characteristics of catchments on hydro-sedimentary dynamics and responses